표피증식인자수용체

Epidermal growth factor receptor
EGFR
1NQL.png
사용 가능한 구조
PDBOrtholog 검색: PDBe RCSB
식별자
에일리어스EGFR, ERBB, ERB1, HER1, NISBD2, PIG61, mENA, 표피성장인자 수용체, 유전자, erBB-1, ERP
외부 IDOMIM: 131550 MGI: 95294 HomoloGene: 74545 GeneCard: EGFR
맞춤법
종.인간마우스
엔트레즈
앙상블
유니프로트
RefSeq(mRNA)

NM_007912
NM_207655

RefSeq(단백질)

NP_031938
NP_997538

장소(UCSC)Chr 7: 55.02 ~55.21 MbChr 11: 16.7 ~16.87 Mb
PubMed 검색[3][4]
위키데이터
인간 보기/편집마우스 표시/편집

표피성장인자 수용체(EGFR; ErbB-1; 사람의 경우 HER1)는 세포외 단백질 [5]배위자의 표피성장인자 패밀리(EGF 패밀리) 구성원에 대한 수용체인 경막 단백질이다.

표피 성장인자 수용체는 EGFR(ErbB-1), HER2/neu(ErB-2), Her3(ErB-3) 및 Her4(ErB-4)와 밀접하게 관련된 4개의 수용체 티로신 키나아제인 ErbB군의 하위 패밀리이다.많은 암 유형에서, EGFR 발현이나 활동에 영향을 미치는 돌연변이는 [6]을 초래할 수 있다.

표피 성장인자와 그 수용체는 밴더빌트 대학스탠리 코헨에 의해 발견되었다.Cohen은 성장 인자를 발견한 공로로 Rita Levi-Montalcini와 1986년 노벨 의학상을 공동 수상했다.

인간에서 EGFR과 다른 수용체 티로신 키나아제들의 부족한 시그널링은 알츠하이머와 같은 질병과 관련이 있는 반면, 과발현은 다양한 종양의 발생과 관련이 있다.수용체의 세포외 도메인에서 EGFR 결합 부위를 차단하거나 세포내 티로신 키나아제 활성을 억제함으로써 EGFR 신호 전달의 중단은 EGFR 발현 종양의 성장을 방지하고 환자의 상태를[citation needed] 개선할 수 있다.

기능.

EGFR 시그널링 캐스케이드
중요한 영역을 강조 표시하는 EGF 수용체 다이어그램

표피성장인자수용체(EGFR)는 표피성장인자포함한 특정 배위자의 결합 및 TGFα 변환성장인자(TGFα)[7]에 의해 활성화되는 트랜스막 단백질이다.ErbB2는 알려진 직접 활성화 배위자를 가지고 있지 않으며, 구성적으로 활성화된 상태이거나 EGFR과 같은 다른 패밀리와의 헤테로다이머화에 의해 활성화될 수 있다.성장인자 배위자에 의해 활성화되면 EGFR은 비활성 단량자에서 활성 호모디머[8]이행한다.– 리간드 [9]결합 전에 미리 형성된 비활성 이합체가 존재할 수 있다는 증거가 있다.EGFR은 리간드 결합 후 호모디머를 형성할 뿐만 아니라 ErbB2/Her2/neu와 같은 ErbB 수용체 패밀리의 다른 멤버와 짝을 이루어 활성화된 헤테로디머를 생성할 수 있다.이 클러스터링이 활성화 자체에 중요한지 개별 [citation needed]이합체의 활성화 이후에 발생하는지는 불분명하지만 활성화된 EGFR의 클러스터가 형성된다는 증거도 있다.

EGFR 이량체는 세포 내 단백질-티로신인산화효소 활성을 자극한다.그 결과, EGFR의 C말단 도메인내의 몇개의 티로신(Y)잔기의 자가인산이 일어난다.여기에는 Y992, Y1045, Y1068, Y1148 및 Y1173이 포함됩니다.[10]이러한 자가인산화(autophosphoryation)는 인산화 티로신과 관련된 여러 다른 단백질에 의해 자신의 포스포티로신 결합 SH2 도메인을 통해 다운스트림 활성화 및 시그널링을 유도한다.이러한 다운스트림 시그널링 단백질은 주로 MAPK, Akt JNK 경로와 같은 여러 신호 전달 캐스케이드를 시작하여 DNA 합성과 세포 [11]증식을 이끈다.이러한 단백질은 세포 이동, 접착, 증식같은 표현형을 조절한다.수용체의 활성화는 인간의 피부에서 선천적인 면역 반응에 중요하다.EGFR의 키나아제 도메인은 또한 EGFR과 함께 응집된 다른 수용체의 티로신 잔기를 교차인산할 수 있으며, 그 자체로 활성화될 수 있다.

생물학적 역할

EGFR은 유선[12][13][14]덕트 발달에 필수적이며, 암피레굴린, TGF-α, 헤레굴린과 같은 EGFR의 작용제[15][16]에스트로겐과 프로게스테론이 없는 경우에도 덕트 및 폐포 발달을 유도한다.

인간의 질병에서의 역할

EGFR 과발현을 초래하는 돌연변이(업규제 또는 증폭으로 알려져 있음)는 폐의 선암(경우의 40%), 항문암,[17] 교아세포종(50%) 및 머리와 목의 상피종(80-100%)[18]을 포함한 많은 과 관련되어 있다.EGFR을 포함한 이러한 체세포 돌연변이는 지속적인 활성화로 이어져 통제되지 않은 세포 [19]분열을 일으킨다.교아세포종에서는 EGFRvII라고 불리는 EGFR의 특정 돌연변이가 종종 [20]관찰된다.EGFR 또는 가족의 돌연변이, 증폭 또는 잘못된 조절은 모든 상피암[21]약 30%에 관련된다.

염증성 질환

이상 EGFR 시그널링은 건선, 습진, 아테롬성 [22][23]경화증과 관련이 있다.그러나 이러한 상황에서 정확한 역할은 정의되지 않았습니다.

단성 질환

다장기 상피 염증을 나타내는 단일 어린이가 EGFR 유전자의 기능 돌연변이를 호모 접합으로 잃은 것으로 밝혀졌다.EGFR 돌연변이의 병원성은 피부 생검의 시험관내 실험과 기능 분석에 의해 뒷받침되었다.그의 심각한 표현형은 EGFR 기능에 대한 많은 이전 연구 결과를 반영한다.그의 임상적 특징으로는 구진성 발진, 피부건조증, 만성설사, 모발성장 이상, 호흡곤란,[24] 전해질 불균형이 있었다.

상처 치유 및 섬유화

EGFR은 근섬유아세포 [25][26]분화에 대한 TGF-beta1 의존성 섬유아세포에 중요한 역할을 하는 것으로 나타났다.조직 내 근섬유아세포의 비정상적인 지속은 진행성 조직 섬유화를 초래할 수 있으며, 조직 또는 장기 기능을 손상시킬 수 있다(예: 피부 비대 또는 켈로이드 흉터, 간경화, 심근 섬유증, 만성 신장 질환).

의료 응용 프로그램

약물 대상

EGFR을 종양 유전자로 식별함으로써 폐암에 대한 게피티니브,[27] 에로티니브, 아파티니브, 브리가티니브, 그리고 대장암에 대한 이코티니브[28] 포함한 EGFR(EGFR 억제제)에 대한 항암 치료제("EGFR 억제제, EGFRi")최근 AstraZeneca는 3세대 티로신 키나아제 [29]억제제인 Osimertinib를 개발했다.

많은 치료적 접근법이 EGFR을 목표로 한다.Cetuximab과 Panitumab모노클로널 항체 억제제의 예이다.단, 전자는 IgG1형, 후자는 IgG2형이다.항체 의존성 세포독성에 대한 결과는 상당히 [30]다를 수 있다.임상 개발의 다른 모노클로널로는 잘루투무맙, 니모투즈마브, 마투즈마브가 있다.모노클로널 항체는 세포외 리간드 결합 도메인을 차단한다.결합 부위가 차단되면 신호 분자는 더 이상 결합하지 못하고 티로신 키나제를 활성화시킬 수 있다.

또 다른 방법은 작은 분자를 사용하여 수용체의 세포질 쪽에 있는 EGFR 티로신 키나제를 억제하는 것이다.키나아제 활성이 없으면 EGFR은 하류 어댑터 단백질의 결합을 위한 전제 조건인 자체 활성화가 불가능하다.표면적으로는 성장을 위해 이 경로에 의존하는 세포에서 신호 캐스케이드를 중단함으로써 종양 증식과 이동을 감소시킨다.Gefitinib, erlotinib, brigatiniblapatinib(혼합 EGFR 및 ERBB2 억제제)은 소분자 키나제 억제제의 예이다.

CimaVax-EGF, 적극적 백신 EGF의 주요 리간드로서 EGF을 겨냥하여, EGF 자체에 대해 항체가 따라서 증식 자극의EGFR-dependent 암을 부인하는;[31일]그것non-small-cell 폐 암(폐 암의 가장 흔한 형태)에 쿠바에서 암 치료제로 사용에 있고, 털을 겪고 있다고 다른 접근법을 쓴다.씨푸드일본, 유럽 및 [32]미국에서 가능한 라이선스를 위한 시험.

EGFR 패밀리 억제제를 식별하기 위해 단백질 [33]인산화 검출을 사용하는 몇 가지 정량적 방법이 있다.

osimertinib, gefitinib, erlotinib, brigatinib 등의 신약이 EGFR을 직접 대상으로 하고 있으며, 환자는 조직 테스트에서 돌연변이 여부를 기준으로 EGFR 양성 및 EGFR 음성으로 구분되어 있다.EGFR 양성 환자는 60%의 응답률을 보였으며, 이는 기존 화학 [34]요법의 응답률을 웃돈다.

하지만 많은 환자들이 내성을 갖게 된다.T790M 돌연변이와 MET [34]종양유전자의 두 가지 주요 저항원인이 있습니다.그러나 2010년 현재 내성에 대한 수용된 접근법에 대한 합의나 특정 조합에 대한 FDA의 승인이 없었다.T790M 돌연변이를 대상으로 한 브리게티닙에 대한 임상시험 II상 결과가 보고되었으며, 브리게티닙은 2015년 2월 FDA로부터 획기적인 치료제 지정 지위를 받았다.

환자의 90% 이상에서 발견되는 EGFR 억제제의 가장 일반적인 부작용은 얼굴과 몸통 전체에 퍼지는 구진성 발진이다. 발진의 존재는 약물의 항종양 [35]효과와 관련이 있다.환자의 10%에서 15%에서 그 영향은 심각할 수 있으며 [36][37]치료가 필요하다.

일부 테스트는 Veristrat[38]같이 EGFR 치료의 이점을 예측하는 것을 목표로 하고 있습니다.

유전자 조작 줄기세포를 이용해 쥐의 EGFR을 대상으로 한 실험실 연구는 2014년에 [39]장래성이 있다는 것을 보여주기 위해 보고되었다.EGFR은 모노클로널 항체와 특정 티로신 키나제 억제제에 [40]대한 잘 확립된 표적이다.

이미징 에이전트 대상

라벨이 [41]부착된 EGF를 사용하여 EGFR 의존성 암을 식별하는 이미징제가 개발되었습니다.EGFR 발현에 대한 생체 내 영상화의 실현 가능성은 여러 [42][43]연구에서 입증되었다.

비소세포 폐암 환자의 EGFR 돌연변이의 존재를 예측할 수 있는 것은 그라운드글라스 불투명도, 공기 기관지그램, [44]자극 여백, 혈관 수렴 및 흉막 후퇴와 같은 특정 컴퓨터 단층 촬영 결과이다.

상호 작용

표피 성장인자 수용체는 다음 물질과 상호작용하는 으로 나타났습니다.

초파리에서 표피 성장인자 수용체는 스피츠[102]상호작용한다.

레퍼런스

  1. ^ a b c GRCh38: 앙상블 릴리즈 89: ENSG00000146648 - 앙상블, 2017년 5월
  2. ^ a b c GRCm38: 앙상블 릴리즈 89: ENSMUSG000020122 - 앙상블, 2017년 5월
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ Herbst RS (2004). "Review of epidermal growth factor receptor biology". International Journal of Radiation Oncology, Biology, Physics. 59 (2 Suppl): 21–6. doi:10.1016/j.ijrobp.2003.11.041. PMID 15142631.
  6. ^ Zhang H, Berezov A, Wang Q, Zhang G, Drebin J, Murali R, Greene MI (August 2007). "ErbB receptors: from oncogenes to targeted cancer treatment". The Journal of Clinical Investigation. 117 (8): 2051–8. doi:10.1172/JCI32278. PMC 1934579. PMID 17671639.
  7. ^ EGFR 및 ErbB 패밀리의 다른 멤버를 활성화할 수 있는 리간드의 전체 목록은 ErbB 기사에 제시되어 있습니다.)
  8. ^ Yarden Y, Schlessinger J (March 1987). "Epidermal growth factor induces rapid, reversible aggregation of the purified epidermal growth factor receptor". Biochemistry. 26 (5): 1443–51. doi:10.1021/bi00379a035. PMID 3494473.
  9. ^ Maruyama IN (April 2014). "Mechanisms of activation of receptor tyrosine kinases: monomers or dimers". Cells. 3 (2): 304–30. doi:10.3390/cells3020304. PMC 4092861. PMID 24758840.
  10. ^ Downward J, Parker P, Waterfield MD (1984). "Autophosphorylation sites on the epidermal growth factor receptor". Nature. 311 (5985): 483–5. Bibcode:1984Natur.311..483D. doi:10.1038/311483a0. PMID 6090945. S2CID 4332354.
  11. ^ Oda K, Matsuoka Y, Funahashi A, Kitano H (2005). "A comprehensive pathway map of epidermal growth factor receptor signaling". Molecular Systems Biology. 1 (1): E1–E17. doi:10.1038/msb4100014. PMC 1681468. PMID 16729045.
  12. ^ Sebastian J, Richards RG, Walker MP, Wiesen JF, Werb Z, Derynck R, Hom YK, Cunha GR, DiAugustine RP (September 1998). "Activation and function of the epidermal growth factor receptor and erbB-2 during mammary gland morphogenesis". Cell Growth & Differentiation. 9 (9): 777–85. PMID 9751121.
  13. ^ McBryan J, Howlin J, Napoletano S, Martin F (June 2008). "Amphiregulin: role in mammary gland development and breast cancer". Journal of Mammary Gland Biology and Neoplasia. 13 (2): 159–69. doi:10.1007/s10911-008-9075-7. PMID 18398673. S2CID 13229645.
  14. ^ Sternlicht MD, Sunnarborg SW (June 2008). "The ADAM17-amphiregulin-EGFR axis in mammary development and cancer". Journal of Mammary Gland Biology and Neoplasia. 13 (2): 181–94. doi:10.1007/s10911-008-9084-6. PMC 2723838. PMID 18470483.
  15. ^ Kenney NJ, Bowman A, Korach KS, Barrett JC, Salomon DS (May 2003). "Effect of exogenous epidermal-like growth factors on mammary gland development and differentiation in the estrogen receptor-alpha knockout (ERKO) mouse". Breast Cancer Research and Treatment. 79 (2): 161–73. doi:10.1023/a:1023938510508. PMID 12825851. S2CID 30782707.
  16. ^ Kenney NJ, Smith GH, Rosenberg K, Cutler ML, Dickson RB (December 1996). "Induction of ductal morphogenesis and lobular hyperplasia by amphiregulin in the mouse mammary gland". Cell Growth & Differentiation. 7 (12): 1769–81. PMID 8959346.
  17. ^ Walker F, Abramowitz L, Benabderrahmane D, Duval X, Descatoire V, Hénin D, et al. (November 2009). "Growth factor receptor expression in anal squamous lesions: modifications associated with oncogenic human papillomavirus and human immunodeficiency virus". Human Pathology. 40 (11): 1517–27. doi:10.1016/j.humpath.2009.05.010. PMID 19716155.
  18. ^ Kumar V, Abbas A, Aster J (2013). Robbins basic pathology. Philadelphia: Elsevier/Saunders. p. 179. ISBN 9781437717815.
  19. ^ Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, et al. (May 2004). "Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib" (PDF). The New England Journal of Medicine. 350 (21): 2129–39. doi:10.1056/NEJMoa040938. PMID 15118073.
  20. ^ Kuan CT, Wikstrand CJ, Bigner DD (June 2001). "EGF mutant receptor vIII as a molecular target in cancer therapy". Endocrine-Related Cancer. 8 (2): 83–96. doi:10.1677/erc.0.0080083. PMID 11397666. S2CID 11790891.
  21. ^ Zhen Y, Guanghui L, Xiefu Z (November 2014). "Knockdown of EGFR inhibits growth and invasion of gastric cancer cells". Cancer Gene Therapy. 21 (11): 491–7. doi:10.1038/cgt.2014.55. PMID 25394504.
  22. ^ Jost M, Kari C, Rodeck U (2000). "The EGF receptor – an essential regulator of multiple epidermal functions". European Journal of Dermatology. 10 (7): 505–10. PMID 11056418.
  23. ^ Dreux AC, Lamb DJ, Modjtahedi H, Ferns GA (May 2006). "The epidermal growth factor receptors and their family of ligands: their putative role in atherogenesis". Atherosclerosis. 186 (1): 38–53. doi:10.1016/j.atherosclerosis.2005.06.038. PMID 16076471.
  24. ^ Campbell P, Morton PE, Takeichi T, Salam A, Roberts N, Proudfoot LE, Mellerio JE, Aminu K, Wellington C, Patil SN, Akiyama M, Liu L, McMillan JR, Aristodemou S, Ishida-Yamamoto A, Abdul-Wahab A, Petrof G, Fong K, Harnchoowong S, Stone KL, Harper JI, McLean WH, Simpson MA, Parsons M, McGrath JA (October 2014). "Epithelial inflammation resulting from an inherited loss-of-function mutation in EGFR". The Journal of Investigative Dermatology. 134 (10): 2570–8. doi:10.1038/jid.2014.164. PMC 4090136. PMID 24691054.
  25. ^ a b Midgley AC, Rogers M, Hallett MB, Clayton A, Bowen T, Phillips AO, Steadman R (May 2013). "Transforming growth factor-β1 (TGF-β1)-stimulated fibroblast to myofibroblast differentiation is mediated by hyaluronan (HA)-facilitated epidermal growth factor receptor (EGFR) and CD44 co-localization in lipid rafts". The Journal of Biological Chemistry. 288 (21): 14824–38. doi:10.1074/jbc.M113.451336. PMC 3663506. PMID 23589287.
  26. ^ Midgley AC, Bowen T, Phillips AO, Steadman R (April 2014). "MicroRNA-7 inhibition rescues age-associated loss of epidermal growth factor receptor and hyaluronan-dependent differentiation in fibroblasts". Aging Cell. 13 (2): 235–44. doi:10.1111/acel.12167. PMC 4331777. PMID 24134702.
  27. ^ Paez JG, Jänne PA, Lee JC, Tracy S, Greulich H, Gabriel S, Herman P, Kaye FJ, Lindeman N, Boggon TJ, Naoki K, Sasaki H, Fujii Y, Eck MJ, Sellers WR, Johnson BE, Meyerson M (June 2004). "EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy". Science. 304 (5676): 1497–500. Bibcode:2004Sci...304.1497P. doi:10.1126/science.1099314. PMID 15118125.
  28. ^ Liang W, Wu X, Fang W, Zhao Y, Yang Y, Hu Z, Xue C, Zhang J, Zhang J, Ma Y, Zhou T, Yan Y, Hou X, Qin T, Dinglin X, Tian Y, Huang P, Huang Y, Zhao H, Zhang L (12 February 2014). "Network meta-analysis of erlotinib, gefitinib, afatinib and icotinib in patients with advanced non-small-cell lung cancer harboring EGFR mutations". PLOS ONE. 9 (2): e85245. Bibcode:2014PLoSO...985245L. doi:10.1371/journal.pone.0085245. PMC 3922700. PMID 24533047.
  29. ^ Greig SL (February 2016). "Osimertinib: First Global Approval". Drugs. 76 (2): 263–73. doi:10.1007/s40265-015-0533-4. PMID 26729184. S2CID 45076898.
  30. ^ Yan L, Beckman RA (October 2005). "Pharmacogenetics and pharmacogenomics in oncology therapeutic antibody development". BioTechniques. 39 (4): 565–8. doi:10.2144/000112043. PMID 16235569.
  31. ^ Rodríguez PC, Rodríguez G, González G, Lage A (Winter 2010). "Clinical development and perspectives of CIMAvax EGF, Cuban vaccine for non-small-cell lung cancer therapy". MEDICC Review. 12 (1): 17–23. doi:10.37757/MR2010.V12.N1.4. PMID 20387330.
  32. ^ Patel N (11 May 2015). "Cuba Has a Lung Cancer Vaccine—And America Wants It". Wired. Retrieved 13 May 2015.
  33. ^ Olive DM (October 2004). "Quantitative methods for the analysis of protein phosphorylation in drug development". Expert Review of Proteomics. 1 (3): 327–41. doi:10.1586/14789450.1.3.327. PMID 15966829. S2CID 30003827.
  34. ^ a b Jackman DM, Miller VA, Cioffredi LA, Yeap BY, Jänne PA, Riely GJ, Ruiz MG, Giaccone G, Sequist LV, Johnson BE (August 2009). "Impact of epidermal growth factor receptor and KRAS mutations on clinical outcomes in previously untreated non-small cell lung cancer patients: results of an online tumor registry of clinical trials". Clinical Cancer Research. 15 (16): 5267–73. doi:10.1158/1078-0432.CCR-09-0888. PMC 3219530. PMID 19671843.
  35. ^ Liu HB, Wu Y, Lv TF, Yao YW, Xiao YY, Yuan DM, Song Y (2013). "Skin rash could predict the response to EGFR tyrosine kinase inhibitor and the prognosis for patients with non-small cell lung cancer: a systematic review and meta-analysis". PLOS ONE. 8 (1): e55128. Bibcode:2013PLoSO...855128L. doi:10.1371/journal.pone.0055128. PMC 3559430. PMID 23383079.
  36. ^ Gerber PA, Meller S, Eames T, Buhren BA, Schrumpf H, Hetzer S, Ehmann LM, Budach W, Bölke E, Matuschek C, Wollenberg A, Homey B (2012). "Management of EGFR-inhibitor associated rash: a retrospective study in 49 patients". European Journal of Medical Research. 17 (1): 4. doi:10.1186/2047-783X-17-4. PMC 3351712. PMID 22472354.
  37. ^ Lacouture ME (October 2006). "Mechanisms of cutaneous toxicities to EGFR inhibitors". Nature Reviews. Cancer. 6 (10): 803–12. doi:10.1038/nrc1970. PMID 16990857. S2CID 7782594.
  38. ^ Molina-Pinelo S, Pastor MD, Paz-Ares L (February 2014). "VeriStrat: a prognostic and/or predictive biomarker for advanced lung cancer patients?". Expert Review of Respiratory Medicine. 8 (1): 1–4. doi:10.1586/17476348.2014.861744. PMID 24308656. S2CID 44854672.
  39. ^ Stuckey DW, Hingtgen SD, Karakas N, Rich BE, Shah K (February 2015). "Engineering toxin-resistant therapeutic stem cells to treat brain tumors". Stem Cells. 33 (2): 589–600. doi:10.1002/stem.1874. PMC 4305025. PMID 25346520.
  40. ^ Roskoski R Jr (2014). "The ErbB/HER family of protein-tyrosine kinases and cancer". Pharmacol Res. 79: 34–74. doi:10.1016/j.phrs.2013.11.002. PMID 24269963.
  41. ^ Lucas LJ, Tellez CA, Castilho ML, Lee CL, Hupman MA, Vieira LS, Ferreira I, Raniero L, Hewitt KC (May 2015). "Development of a sensitive, stable and EGFR-specific molecular imaging agent for surface enhanced Raman spectroscopy". Journal of Raman Spectroscopy. 46 (5): 434–446. Bibcode:2015JRSp...46..434L. doi:10.1002/jrs.4678.
  42. ^ Lucas LJ, Chen XK, Smith AJ, Korbelik M, Zeng, Haitian L, Lee PW, Hewitt KC (23 January 2015). "Aggregation of nanoparticles in endosomes and lysosomes produces surface-enhanced Raman spectroscopy". Journal of Nanophotonics. 9 (1): 093094–1–14. Bibcode:2015JNano...9.3094L. doi:10.1117/1.JNP.9.093094.
  43. ^ Andersson KG, Oroujeni M, Garousi J, Mitran B, Ståhl S, Orlova A, Löfblom J, Tolmachev V (December 2016). "Feasibility of imaging of epidermal growth factor receptor expression with ZEGFR:2377 affibody molecule labeled with 99mTc using a peptide-based cysteine-containing chelator". International Journal of Oncology. 49 (6): 2285–2293. doi:10.3892/ijo.2016.3721. PMC 5118000. PMID 27748899.
  44. ^ 비소세포 폐암 환자의 EGFR 돌연변이를 예측하기 위한 에레라 오르티스 A, 카다비드 카마초 T, 바스케스 페르도모 A, 카스틸로 헤라조 V, 아람불라 네이라 J, 예페스 부스타만테 M, 카다비드 카마초 E. 임상 및 CT 패턴:체계적인 문헌 검토 및 메타 분석.유럽 방사선학 저널 오픈.2022; 9:100400.https://doi.org/10.1016/j.ejro.2022.100400
  45. ^ Bonaccorsi L, Carloni V, Muratori M, Formigli L, Zecchi S, Forti G, Baldi E (October 2004). "EGF receptor (EGFR) signaling promoting invasion is disrupted in androgen-sensitive prostate cancer cells by an interaction between EGFR and androgen receptor (AR)". International Journal of Cancer. 112 (1): 78–86. doi:10.1002/ijc.20362. hdl:2158/395766. PMID 15305378. S2CID 46121331.
  46. ^ Bonaccorsi L, Muratori M, Carloni V, Marchiani S, Formigli L, Forti G, Baldi E (August 2004). "The androgen receptor associates with the epidermal growth factor receptor in androgen-sensitive prostate cancer cells". Steroids. 69 (8–9): 549–52. doi:10.1016/j.steroids.2004.05.011. hdl:2158/395763. PMID 15288768. S2CID 23831527.
  47. ^ Kim SW, Hayashi M, Lo JF, Yang Y, Yoo JS, Lee JD (January 2003). "ADP-ribosylation factor 4 small GTPase mediates epidermal growth factor receptor-dependent phospholipase D2 activation". The Journal of Biological Chemistry. 278 (4): 2661–8. doi:10.1074/jbc.M205819200. PMID 12446727.
  48. ^ a b Couet J, Sargiacomo M, Lisanti MP (November 1997). "Interaction of a receptor tyrosine kinase, EGF-R, with caveolins. Caveolin binding negatively regulates tyrosine and serine/threonine kinase activities". The Journal of Biological Chemistry. 272 (48): 30429–38. doi:10.1074/jbc.272.48.30429. PMID 9374534.
  49. ^ a b Tvorogov D, Carpenter G (July 2002). "EGF-dependent association of phospholipase C-gamma1 with c-Cbl". Experimental Cell Research. 277 (1): 86–94. doi:10.1006/excr.2002.5545. PMID 12061819.
  50. ^ a b Ettenberg SA, Keane MM, Nau MM, Frankel M, Wang LM, Pierce JH, Lipkowitz S (March 1999). "cbl-b inhibits epidermal growth factor receptor signaling". Oncogene. 18 (10): 1855–66. doi:10.1038/sj.onc.1202499. PMID 10086340.
  51. ^ a b Pennock S, Wang Z (May 2008). "A tale of two Cbls: interplay of c-Cbl and Cbl-b in epidermal growth factor receptor downregulation". Molecular and Cellular Biology. 28 (9): 3020–37. doi:10.1128/MCB.01809-07. PMC 2293090. PMID 18316398.
  52. ^ a b Umebayashi K, Stenmark H, Yoshimori T (August 2008). "Ubc4/5 and c-Cbl continue to ubiquitinate EGF receptor after internalization to facilitate polyubiquitination and degradation". Molecular Biology of the Cell. 19 (8): 3454–62. doi:10.1091/mbc.E07-10-0988. PMC 2488299. PMID 18508924.
  53. ^ Ng C, Jackson RA, Buschdorf JP, Sun Q, Guy GR, Sivaraman J (March 2008). "Structural basis for a novel intrapeptidyl H-bond and reverse binding of c-Cbl-TKB domain substrates". The EMBO Journal. 27 (5): 804–16. doi:10.1038/emboj.2008.18. PMC 2265755. PMID 18273061.
  54. ^ a b c d e f Schulze WX, Deng L, Mann M (2005). "Phosphotyrosine interactome of the ErbB-receptor kinase family". Molecular Systems Biology. 1 (1): E1–E13. doi:10.1038/msb4100012. PMC 1681463. PMID 16729043.
  55. ^ Kim M, Tezuka T, Suziki Y, Sugano S, Hirai M, Yamamoto T (October 1999). "Molecular cloning and characterization of a novel cbl-family gene, cbl-c". Gene. 239 (1): 145–54. doi:10.1016/S0378-1119(99)00356-X. PMID 10571044.
  56. ^ Keane MM, Ettenberg SA, Nau MM, Banerjee P, Cuello M, Penninger J, Lipkowitz S (June 1999). "cbl-3: a new mammalian cbl family protein". Oncogene. 18 (22): 3365–75. doi:10.1038/sj.onc.1202753. PMID 10362357.
  57. ^ Wang Z, Wang M, Lazo JS, Carr BI (May 2002). "Identification of epidermal growth factor receptor as a target of Cdc25A protein phosphatase". The Journal of Biological Chemistry. 277 (22): 19470–5. doi:10.1074/jbc.M201097200. PMID 11912208.
  58. ^ Hashimoto Y, Katayama H, Kiyokawa E, Ota S, Kurata T, Gotoh N, Otsuka N, Shibata M, Matsuda M (July 1998). "Phosphorylation of CrkII adaptor protein at tyrosine 221 by epidermal growth factor receptor". The Journal of Biological Chemistry. 273 (27): 17186–91. doi:10.1074/jbc.273.27.17186. PMID 9642287.
  59. ^ Hazan RB, Norton L (April 1998). "The epidermal growth factor receptor modulates the interaction of E-cadherin with the actin cytoskeleton". The Journal of Biological Chemistry. 273 (15): 9078–84. doi:10.1074/jbc.273.15.9078. PMID 9535896.
  60. ^ Schroeder JA, Adriance MC, McConnell EJ, Thompson MC, Pockaj B, Gendler SJ (June 2002). "ErbB-beta-catenin complexes are associated with human infiltrating ductal breast and murine mammary tumor virus (MMTV)-Wnt-1 and MMTV-c-Neu transgenic carcinomas". The Journal of Biological Chemistry. 277 (25): 22692–8. doi:10.1074/jbc.M201975200. PMID 11950845.
  61. ^ Takahashi K, Suzuki K, Tsukatani Y (July 1997). "Induction of tyrosine phosphorylation and association of beta-catenin with EGF receptor upon tryptic digestion of quiescent cells at confluence". Oncogene. 15 (1): 71–8. doi:10.1038/sj.onc.1201160. PMID 9233779.
  62. ^ Santra M, Reed CC, Iozzo RV (September 2002). "Decorin binds to a narrow region of the epidermal growth factor (EGF) receptor, partially overlapping but distinct from the EGF-binding epitope". The Journal of Biological Chemistry. 277 (38): 35671–81. doi:10.1074/jbc.M205317200. PMID 12105206.
  63. ^ Iozzo RV, Moscatello DK, McQuillan DJ, Eichstetter I (February 1999). "Decorin is a biological ligand for the epidermal growth factor receptor". The Journal of Biological Chemistry. 274 (8): 4489–92. doi:10.1074/jbc.274.8.4489. PMID 9988678.
  64. ^ a b Wong L, Deb TB, Thompson SA, Wells A, Johnson GR (March 1999). "A differential requirement for the COOH-terminal region of the epidermal growth factor (EGF) receptor in amphiregulin and EGF mitogenic signaling". The Journal of Biological Chemistry. 274 (13): 8900–9. doi:10.1074/jbc.274.13.8900. PMID 10085134.
  65. ^ Stortelers C, Souriau C, van Liempt E, van de Poll ML, van Zoelen EJ (July 2002). "Role of the N-terminus of epidermal growth factor in ErbB-2/ErbB-3 binding studied by phage display". Biochemistry. 41 (27): 8732–41. doi:10.1021/bi025878c. PMID 12093292.
  66. ^ a b Daly RJ, Sanderson GM, Janes PW, Sutherland RL (May 1996). "Cloning and characterization of GRB14, a novel member of the GRB7 gene family". The Journal of Biological Chemistry. 271 (21): 12502–10. doi:10.1074/jbc.271.21.12502. PMID 8647858.
  67. ^ a b c Braverman LE, Quilliam LA (February 1999). "Identification of Grb4/Nckbeta, a src homology 2 and 3 domain-containing adapter protein having similar binding and biological properties to Nck". The Journal of Biological Chemistry. 274 (9): 5542–9. doi:10.1074/jbc.274.9.5542. PMID 10026169.
  68. ^ Blagoev B, Kratchmarova I, Ong SE, Nielsen M, Foster LJ, Mann M (March 2003). "A proteomics strategy to elucidate functional protein-protein interactions applied to EGF signaling". Nature Biotechnology. 21 (3): 315–8. doi:10.1038/nbt790. PMID 12577067. S2CID 26838266.
  69. ^ Oneyama C, Nakano H, Sharma SV (March 2002). "UCS15A, a novel small molecule, SH3 domain-mediated protein-protein interaction blocking drug". Oncogene. 21 (13): 2037–50. doi:10.1038/sj.onc.1205271. PMID 11960376.
  70. ^ Okutani T, Okabayashi Y, Kido Y, Sugimoto Y, Sakaguchi K, Matuoka K, Takenawa T, Kasuga M (December 1994). "Grb2/Ash binds directly to tyrosines 1068 and 1086 and indirectly to tyrosine 1148 of activated human epidermal growth factor receptors in intact cells". The Journal of Biological Chemistry. 269 (49): 31310–4. doi:10.1016/S0021-9258(18)47424-8. PMID 7527043.
  71. ^ Tortora G, Damiano V, Bianco C, Baldassarre G, Bianco AR, Lanfrancone L, Pelicci PG, Ciardiello F (February 1997). "The RIalpha subunit of protein kinase A (PKA) binds to Grb2 and allows PKA interaction with the activated EGF-receptor". Oncogene. 14 (8): 923–8. doi:10.1038/sj.onc.1200906. PMID 9050991.
  72. ^ a b Buday L, Egan SE, Rodriguez Viciana P, Cantrell DA, Downward J (March 1994). "A complex of Grb2 adaptor protein, Sos exchange factor, and a 36-kDa membrane-bound tyrosine phosphoprotein is implicated in ras activation in T cells". The Journal of Biological Chemistry. 269 (12): 9019–23. doi:10.1016/S0021-9258(17)37070-9. PMID 7510700.
  73. ^ Lowenstein EJ, Daly RJ, Batzer AG, Li W, Margolis B, Lammers R, Ullrich A, Skolnik EY, Bar-Sagi D, Schlessinger J (August 1992). "The SH2 and SH3 domain-containing protein GRB2 links receptor tyrosine kinases to ras signaling". Cell. 70 (3): 431–42. doi:10.1016/0092-8674(92)90167-B. PMID 1322798.
  74. ^ a b c d e Olayioye MA, Beuvink I, Horsch K, Daly JM, Hynes NE (June 1999). "ErbB receptor-induced activation of stat transcription factors is mediated by Src tyrosine kinases". The Journal of Biological Chemistry. 274 (24): 17209–18. doi:10.1074/jbc.274.24.17209. PMID 10358079.
  75. ^ Schroeder JA, Thompson MC, Gardner MM, Gendler SJ (April 2001). "Transgenic MUC1 interacts with epidermal growth factor receptor and correlates with mitogen-activated protein kinase activation in the mouse mammary gland". The Journal of Biological Chemistry. 276 (16): 13057–64. doi:10.1074/jbc.M011248200. PMID 11278868.
  76. ^ Li Y, Ren J, Yu W, Li Q, Kuwahara H, Yin L, Carraway KL, Kufe D (September 2001). "The epidermal growth factor receptor regulates interaction of the human DF3/MUC1 carcinoma antigen with c-Src and beta-catenin". The Journal of Biological Chemistry. 276 (38): 35239–42. doi:10.1074/jbc.C100359200. PMID 11483589.
  77. ^ Tang J, Feng GS, Li W (October 1997). "Induced direct binding of the adapter protein Nck to the GTPase-activating protein-associated protein p62 by epidermal growth factor". Oncogene. 15 (15): 1823–32. doi:10.1038/sj.onc.1201351. PMID 9362449.
  78. ^ Li W, Hu P, Skolnik EY, Ullrich A, Schlessinger J (December 1992). "The SH2 and SH3 domain-containing Nck protein is oncogenic and a common target for phosphorylation by different surface receptors". Molecular and Cellular Biology. 12 (12): 5824–33. doi:10.1128/MCB.12.12.5824. PMC 360522. PMID 1333047.
  79. ^ Chen M, She H, Davis EM, Spicer CM, Kim L, Ren R, Le Beau MM, Li W (September 1998). "Identification of Nck family genes, chromosomal localization, expression, and signaling specificity". The Journal of Biological Chemistry. 273 (39): 25171–8. doi:10.1074/jbc.273.39.25171. PMID 9737977.
  80. ^ Tu Y, Li F, Wu C (December 1998). "Nck-2, a novel Src homology2/3-containing adaptor protein that interacts with the LIM-only protein PINCH and components of growth factor receptor kinase-signaling pathways". Molecular Biology of the Cell. 9 (12): 3367–82. doi:10.1091/mbc.9.12.3367. PMC 25640. PMID 9843575.
  81. ^ Gauthier ML, Torretto C, Ly J, Francescutti V, O'Day DH (August 2003). "Protein kinase Calpha negatively regulates cell spreading and motility in MDA-MB-231 human breast cancer cells downstream of epidermal growth factor receptor". Biochemical and Biophysical Research Communications. 307 (4): 839–46. doi:10.1016/S0006-291X(03)01273-7. PMID 12878187.
  82. ^ Bedrin MS, Abolafia CM, Thompson JF (July 1997). "Cytoskeletal association of epidermal growth factor receptor and associated signaling proteins is regulated by cell density in IEC-6 intestinal cells". Journal of Cellular Physiology. 172 (1): 126–36. doi:10.1002/(SICI)1097-4652(199707)172:1<126::AID-JCP14>3.0.CO;2-A. PMID 9207933.
  83. ^ Sun J, Nanjundan M, Pike LJ, Wiedmer T, Sims PJ (May 2002). "Plasma membrane phospholipid scramblase 1 is enriched in lipid rafts and interacts with the epidermal growth factor receptor". Biochemistry. 41 (20): 6338–45. doi:10.1021/bi025610l. PMID 12009895.
  84. ^ Sarmiento M, Puius YA, Vetter SW, Keng YF, Wu L, Zhao Y, Lawrence DS, Almo SC, Zhang ZY (July 2000). "Structural basis of plasticity in protein tyrosine phosphatase 1B substrate recognition". Biochemistry. 39 (28): 8171–9. doi:10.1021/bi000319w. PMID 10889023.
  85. ^ Zhang ZY, Walsh AB, Wu L, McNamara DJ, Dobrusin EM, Miller WT (March 1996). "Determinants of substrate recognition in the protein-tyrosine phosphatase, PTP1". The Journal of Biological Chemistry. 271 (10): 5386–92. doi:10.1074/jbc.271.10.5386. PMID 8621392.
  86. ^ a b Tomic S, Greiser U, Lammers R, Kharitonenkov A, Imyanitov E, Ullrich A, Böhmer FD (September 1995). "Association of SH2 domain protein tyrosine phosphatases with the epidermal growth factor receptor in human tumor cells. Phosphatidic acid activates receptor dephosphorylation by PTP1C". The Journal of Biological Chemistry. 270 (36): 21277–84. doi:10.1074/jbc.270.36.21277. PMID 7673163.
  87. ^ Keilhack H, Tenev T, Nyakatura E, Godovac-Zimmermann J, Nielsen L, Seedorf K, Böhmer FD (September 1998). "Phosphotyrosine 1173 mediates binding of the protein-tyrosine phosphatase SHP-1 to the epidermal growth factor receptor and attenuation of receptor signaling". The Journal of Biological Chemistry. 273 (38): 24839–46. doi:10.1074/jbc.273.38.24839. PMID 9733788.
  88. ^ Wang SE, Wu FY, Shin I, Qu S, Arteaga CL (June 2005). "Transforming growth factor {beta} (TGF-{beta})-Smad target gene protein tyrosine phosphatase receptor type kappa is required for TGF-{beta} function". Molecular and Cellular Biology. 25 (11): 4703–15. doi:10.1128/MCB.25.11.4703-4715.2005. PMC 1140650. PMID 15899872.
  89. ^ Lu Y, Brush J, Stewart TA (April 1999). "NSP1 defines a novel family of adaptor proteins linking integrin and tyrosine kinase receptors to the c-Jun N-terminal kinase/stress-activated protein kinase signaling pathway". The Journal of Biological Chemistry. 274 (15): 10047–52. doi:10.1074/jbc.274.15.10047. PMID 10187783.
  90. ^ Soubeyran P, Kowanetz K, Szymkiewicz I, Langdon WY, Dikic I (March 2002). "Cbl-CIN85-endophilin complex mediates ligand-induced downregulation of EGF receptors". Nature. 416 (6877): 183–7. Bibcode:2002Natur.416..183S. doi:10.1038/416183a. PMID 11894095. S2CID 635702.
  91. ^ Szymkiewicz I, Kowanetz K, Soubeyran P, Dinarina A, Lipkowitz S, Dikic I (October 2002). "CIN85 participates in Cbl-b-mediated down-regulation of receptor tyrosine kinases". The Journal of Biological Chemistry. 277 (42): 39666–72. doi:10.1074/jbc.M205535200. PMID 12177062.
  92. ^ Sakaguchi K, Okabayashi Y, Kido Y, Kimura S, Matsumura Y, Inushima K, Kasuga M (April 1998). "Shc phosphotyrosine-binding domain dominantly interacts with epidermal growth factor receptors and mediates Ras activation in intact cells". Molecular Endocrinology. 12 (4): 536–43. doi:10.1210/mend.12.4.0094. PMID 9544989.
  93. ^ Qian X, Esteban L, Vass WC, Upadhyaya C, Papageorge AG, Yienger K, Ward JM, Lowy DR, Santos E (February 2000). "The Sos1 and Sos2 Ras-specific exchange factors: differences in placental expression and signaling properties". The EMBO Journal. 19 (4): 642–54. doi:10.1093/emboj/19.4.642. PMC 305602. PMID 10675333.
  94. ^ Qian X, Vass WC, Papageorge AG, Anborgh PH, Lowy DR (February 1998). "N terminus of Sos1 Ras exchange factor: critical roles for the Dbl and pleckstrin homology domains". Molecular and Cellular Biology. 18 (2): 771–8. doi:10.1128/mcb.18.2.771. PMC 108788. PMID 9447973.
  95. ^ Keely SJ, Calandrella SO, Barrett KE (April 2000). "Carbachol-stimulated transactivation of epidermal growth factor receptor and mitogen-activated protein kinase in T(84) cells is mediated by intracellular Ca2+, PYK-2, and p60(src)". The Journal of Biological Chemistry. 275 (17): 12619–25. doi:10.1074/jbc.275.17.12619. PMID 10777553.
  96. ^ Sato K, Kimoto M, Kakumoto M, Horiuchi D, Iwasaki T, Tokmakov AA, Fukami Y (September 2000). "Adaptor protein Shc undergoes translocation and mediates up-regulation of the tyrosine kinase c-Src in EGF-stimulated A431 cells". Genes to Cells. 5 (9): 749–64. doi:10.1046/j.1365-2443.2000.00358.x. PMID 10971656. S2CID 26366427.
  97. ^ Xia L, Wang L, Chung AS, Ivanov SS, Ling MY, Dragoi AM, Platt A, Gilmer TM, Fu XY, Chin YE (August 2002). "Identification of both positive and negative domains within the epidermal growth factor receptor COOH-terminal region for signal transducer and activator of transcription (STAT) activation". The Journal of Biological Chemistry. 277 (34): 30716–23. doi:10.1074/jbc.M202823200. PMID 12070153.
  98. ^ Yuan ZL, Guan YJ, Wang L, Wei W, Kane AB, Chin YE (November 2004). "Central role of the threonine residue within the p+1 loop of receptor tyrosine kinase in STAT3 constitutive phosphorylation in metastatic cancer cells". Molecular and Cellular Biology. 24 (21): 9390–400. doi:10.1128/MCB.24.21.9390-9400.2004. PMC 522220. PMID 15485908.
  99. ^ Sehat B, Andersson S, Girnita L, Larsson O (July 2008). "Identification of c-Cbl as a new ligase for insulin-like growth factor-I receptor with distinct roles from Mdm2 in receptor ubiquitination and endocytosis". Cancer Research. 68 (14): 5669–77. doi:10.1158/0008-5472.CAN-07-6364. PMID 18632619.
  100. ^ She HY, Rockow S, Tang J, Nishimura R, Skolnik EY, Chen M, Margolis B, Li W (September 1997). "Wiskott-Aldrich syndrome protein is associated with the adapter protein Grb2 and the epidermal growth factor receptor in living cells". Molecular Biology of the Cell. 8 (9): 1709–21. doi:10.1091/mbc.8.9.1709. PMC 305731. PMID 9307968.
  101. ^ Jiang Y, Lim J, Wu KC, Xu W, Suen JY, Fairlie DP (November 2020). "PAR2 induces ovarian cancer cell motility by merging three signalling pathways to transactivate EGFR". British Journal of Pharmacology. (n/a) ((n/a)): 913–932. doi:10.1111/bph.15332. ISSN 0007-1188. PMID 33226635. S2CID 227135487.
  102. ^ Shilo BZ (March 2003). "Signaling by the Drosophila epidermal growth factor receptor pathway during development". Experimental Cell Research. 284 (1): 140–9. doi:10.1016/S0014-4827(02)00094-0. PMID 12648473.

추가 정보

외부 링크