CD9

CD9
인간 CD9의 결정 구조
CD9
식별자
에일리어스CD9, BTCC-1, DRAP-27, MIC3, MRP-1, TSPAN-29, TSPAN29, CD9 분자
외부 IDOMIM: 143030 MGI: 88348 HomoloGene: 20420 GeneCard: CD9
맞춤법
종.인간마우스
엔트레즈
앙상블
유니프로트
RefSeq(mRNA)

NM_001769
NM_001330312

NM_007657

RefSeq(단백질)

NP_001317241
NP_001760

NP_031683

장소(UCSC)Chr 12: 6.2 ~6.24 MbChr 6: 125.44 ~125.47 Mb
PubMed 검색[3][4]
위키데이터
인간 보기/편집마우스 표시/편집

CD9테트라스파닌족으로도 알려진 트랜스막4 슈퍼패밀리의 일원인 단백질을 코드하는 유전자이다.이것은 4개의 막 통과 영역으로 구성되고 테트라스파닌 [5][6][7]계열 전체에 보존되는 디술피드 결합을 포함하는 2개의 세포 외 고리를 가진 세포 표면 당단백질입니다.또한 CD9이 지질 및 [5][8][9]기타 단백질과 상호작용할 수 있도록 하는 뚜렷한 팔미토일화 부위를 포함합니다.

기능.

테트라스파닌 단백질은 접착, 운동성, 막 융합, 신호 전달 및 단백질 [5][10]밀매와 같은 다양한 생물학적 과정에 관여합니다.테트라스파닌은 서로 간의 상호작용을 포함한 많은 다른 단백질과 상호작용하는 능력 때문에 많은 생물학적 과정에서 역할을 한다.이들의 뚜렷한 팔미토일화 부위는 세포막에서 테트라스파닌이 풍부한 마이크로도메인([11][8][10]TEM)으로 조직할 수 있게 해준다.이러한 TEM은 외소체 [12]생물 형성을 포함한 많은 세포 과정에서 역할을 하는 것으로 생각된다.CD9은 표면에 [11][10][13][14]함유되어 있기 때문에 일반적으로 엑소좀의 마커로 사용됩니다.

그러나 경우에 따라서는 CD9이 엑소좀의 병원성 능력에 더 큰 역할을 한다.HIV-1 감염에서 볼 수 있듯이, 엑소좀은 테트라스파닌 CD9과 [15]CD81을 통해 HIV-1 진입을 증가시킬 수 있다.그러나 세포막에서의 CD9의 발현은 [16][17]HIV-1의 바이러스 진입을 감소시키는 것으로 보인다.

CD9은 혈소판 활성화와 [18]응집도 유발하는 것으로 나타나 세포 과정에서 다양한 역할을 한다.그것은 알파를 이룬다.면역 [11][19]반응에 도움을 줄 수 있는 호중구와 같은 다른 세포와 직접 상호작용하는 혈소판 표면의 IIbeta3-CD9-CD63 복합체.또한, 그 단백질은 근육 세포 융합을 촉진하고 근튜브 [20][21]유지를 지원하는 것으로 보인다.또한 포유류의 [9]수정 과정에서 난자-배마 융합에 중요한 역할을 한다.난모세포가 배란되는 동안 CD9 결핍 난모세포는 수정 [22]시 정자와 적절히 융합되지 않는다.CD9은 난모세포의 미세빌라막에 위치하고 있으며 난모세포 미세빌리[23]정상적인 형태를 유지하는데 개입하는 것으로 보인다.

CD9은 또한 세포[24] 접착과 [25][26]이동을 조절할 수 있다.이 기능은 암과 암 전이를 연구할 때 CD9을 관심 있게 만듭니다.그러나 CD9은 여러 종류의 암에서 다양한 역할을 하는 것으로 보인다.연구에 따르면 CD9 발현 수준은 전이 가능성 또는 환자 생존과 역상관관계가 있는 것으로 나타났다.CD9의 과잉 발현은 특정 유형의 흑색종,[27][28][29][30][31] 유방, 폐, 췌장 및 대장암에서 전이를 감소시키는 것으로 나타났다.그러나 다른 연구에서 CD9은 폐암,[25] 간세포암,[26][32] 급성 림프아구성 백혈병,[33] 유방암 등 다양한 세포주에서의 전이성 암에서 이동을 증가시키거나 고도로 발현되는 것으로 나타났다.암 CD9에 기초한 제안은 종양 억제제 또는 촉진제가 될 수 있다.[34] 또한 CD9이 암세포가 화학내성을 발달시키는 능력에 영향을 미친다는 것이 제안되었다.

또한 CD9은 상처에 대한 황색포도상구균의 유착을 차단하는 것으로 나타났다.유착은 [35]상처의 감염에 필수적이다.이는 CD9이 황색포도상구균에 의한 피부감염 치료제로 사용될 수 있음을 시사한다.

상호 작용

CD9은 다음 제품과 상호 작용하는 으로 나타났습니다.

「 」를 참조해 주세요.

레퍼런스

  1. ^ a b c GRCh38: 앙상블 릴리즈 89: ENSG000010278 - 앙상블, 2017년 5월
  2. ^ a b c GRCm38: 앙상블 릴리즈 89: ENSMUSG000030342 - 앙상블, 2017년 5월
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ a b c Andreu Z, Yáñez-Mó M (2014). "Tetraspanins in extracellular vesicle formation and function". Frontiers in Immunology. 8: 342. doi:10.3389/fimmu.2014.00442. PMC 4165315. PMID 25278937.
  6. ^ "CD9 CD9 molecule [Homo sapiens (human)] - Gene - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2019-12-04.
  7. ^ "CD9 Gene - GeneCards CD9 Protein CD9 Antibody". www.genecards.org. Retrieved 2019-12-04.
  8. ^ a b Yáñez-Mó M, Barreiro O, Gordon-Alonso M, Sala-Valdés M, Sánchez-Madrid F (September 2009). "Tetraspanin-enriched microdomains: a functional unit in cell plasma membranes". Trends in Cell Biology. 19 (9): 434–46. doi:10.1016/j.tcb.2009.06.004. PMID 19709882.
  9. ^ a b Yang XH, Kovalenko OV, Kolesnikova TV, Andzelm MM, Rubinstein E, Strominger JL, Hemler ME (May 2006). "Contrasting effects of EWI proteins, integrins, and protein palmitoylation on cell surface CD9 organization". The Journal of Biological Chemistry. 281 (18): 12976–85. doi:10.1074/jbc.M510617200. PMID 16537545.
  10. ^ a b c Hemler ME (October 2005). "Tetraspanin functions and associated microdomains". Nature Reviews. Molecular Cell Biology. 6 (10): 801–11. doi:10.1038/nrm1736. PMID 16314869. S2CID 5906694.
  11. ^ a b c d Israels SJ, McMillan-Ward EM, Easton J, Robertson C, McNicol A (January 2001). "CD63 associates with the alphaIIb beta3 integrin-CD9 complex on the surface of activated platelets". Thrombosis and Haemostasis. 85 (1): 134–41. doi:10.1055/s-0037-1612916. PMID 11204565.
  12. ^ Perez-Hernandez D, Gutiérrez-Vázquez C, Jorge I, López-Martín S, Ursa A, Sánchez-Madrid F, et al. (April 2013). "The intracellular interactome of tetraspanin-enriched microdomains reveals their function as sorting machineries toward exosomes". The Journal of Biological Chemistry. 288 (17): 11649–61. doi:10.1074/jbc.M112.445304. PMC 3636856. PMID 23463506.
  13. ^ Lai RC, Arslan F, Lee MM, Sze NS, Choo A, Chen TS, et al. (May 2010). "Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury". Stem Cell Research. 4 (3): 214–22. doi:10.1016/j.scr.2009.12.003. PMID 20138817.
  14. ^ Sumiyoshi N, Ishitobi H, Miyaki S, Miyado K, Adachi N, Ochi M (October 2016). "The role of tetraspanin CD9 in osteoarthritis using three different mouse models". Biomedical Research. 37 (5): 283–291. doi:10.2220/biomedres.37.283. PMID 27784871.
  15. ^ Sims B, Farrow AL, Williams SD, Bansal A, Krendelchtchikov A, Matthews QL (June 2018). "Tetraspanin blockage reduces exosome-mediated HIV-1 entry". Archives of Virology. 163 (6): 1683–1689. doi:10.1007/s00705-018-3737-6. PMC 5958159. PMID 29429034.
  16. ^ Gordón-Alonso M, Yañez-Mó M, Barreiro O, Alvarez S, Muñoz-Fernández MA, Valenzuela-Fernández A, Sánchez-Madrid F (October 2006). "Tetraspanins CD9 and CD81 modulate HIV-1-induced membrane fusion". Journal of Immunology. 177 (8): 5129–37. doi:10.4049/jimmunol.177.8.5129. PMID 17015697.
  17. ^ Thali M (2009). "The roles of tetraspanins in HIV-1 replication". HIV Interactions with Host Cell Proteins. Current Topics in Microbiology and Immunology. Vol. 339. Springer Berlin Heidelberg. pp. 85–102. doi:10.1007/978-3-642-02175-6_5. ISBN 978-3-642-02174-9. PMC 4067973. PMID 20012525.
  18. ^ Rubinstein E, Billard M, Plaisance S, Prenant M, Boucheix C (September 1993). "Molecular cloning of the mouse equivalent of CD9 antigen". Thrombosis Research. 71 (5): 377–83. doi:10.1016/0049-3848(93)90162-h. PMID 8236164.
  19. ^ Yun SH, Sim EH, Goh RY, Park JI, Han JY (2016). "Platelet Activation: The Mechanisms and Potential Biomarkers". BioMed Research International. 2016: 9060143. doi:10.1155/2016/9060143. PMC 4925965. PMID 27403440.
  20. ^ Tachibana I, Hemler ME (August 1999). "Role of transmembrane 4 superfamily (TM4SF) proteins CD9 and CD81 in muscle cell fusion and myotube maintenance". The Journal of Cell Biology. 146 (4): 893–904. doi:10.1083/jcb.146.4.893. PMC 2156130. PMID 10459022.
  21. ^ Charrin S, Latil M, Soave S, Polesskaya A, Chrétien F, Boucheix C, Rubinstein E (2013). "Normal muscle regeneration requires tight control of muscle cell fusion by tetraspanins CD9 and CD81". Nature Communications. 4: 1674. Bibcode:2013NatCo...4.1674C. doi:10.1038/ncomms2675. PMID 23575678.
  22. ^ Le Naour F, Rubinstein E, Jasmin C, Prenant M, Boucheix C (January 2000). "Severely reduced female fertility in CD9-deficient mice". Science. 287 (5451): 319–21. Bibcode:2000Sci...287..319L. doi:10.1126/science.287.5451.319. PMID 10634790.
  23. ^ Runge KE, Evans JE, He ZY, Gupta S, McDonald KL, Stahlberg H, et al. (April 2007). "Oocyte CD9 is enriched on the microvillar membrane and required for normal microvillar shape and distribution". Developmental Biology. 304 (1): 317–25. doi:10.1016/j.ydbio.2006.12.041. PMID 17239847.
  24. ^ Machado-Pineda Y, Cardeñes B, Reyes R, López-Martín S, Toribio V, Sánchez-Organero P, et al. (2018). "CD9 Controls Integrin α5β1-Mediated Cell Adhesion by Modulating Its Association With the Metalloproteinase ADAM17". Frontiers in Immunology. 9: 2474. doi:10.3389/fimmu.2018.02474. PMC 6230984. PMID 30455686.
  25. ^ a b Blake DJ, Martiszus JD, Lone TH, Fenster SD (November 2018). "Ablation of the CD9 receptor in human lung cancer cells using CRISPR/Cas alters migration to chemoattractants including IL-16". Cytokine. 111: 567–570. doi:10.1016/j.cyto.2018.05.038. PMID 29884309. S2CID 46997236.
  26. ^ a b Miki Y, Yashiro M, Okuno T, Kitayama K, Masuda G, Hirakawa K, Ohira M (March 2018). "CD9-positive exosomes from cancer-associated fibroblasts stimulate the migration ability of scirrhous-type gastric cancer cells". British Journal of Cancer. 118 (6): 867–877. doi:10.1038/bjc.2017.487. PMC 5886122. PMID 29438363.
  27. ^ Mimori K, Mori M, Shiraishi T, Tanaka S, Haraguchi M, Ueo H, et al. (March 1998). "Expression of ornithine decarboxylase mRNA and c-myc mRNA in breast tumours". International Journal of Oncology. 12 (3): 597–601. doi:10.3892/ijo.12.3.597. PMID 9472098.
  28. ^ Higashiyama M, Taki T, Ieki Y, Adachi M, Huang CL, Koh T, et al. (December 1995). "Reduced motility related protein-1 (MRP-1/CD9) gene expression as a factor of poor prognosis in non-small cell lung cancer". Cancer Research. 55 (24): 6040–4. doi:10.1016/0169-5002(96)87780-4. PMID 8521390.
  29. ^ Ikeyama S, Koyama M, Yamaoko M, Sasada R, Miyake M (May 1993). "Suppression of cell motility and metastasis by transfection with human motility-related protein (MRP-1/CD9) DNA". The Journal of Experimental Medicine. 177 (5): 1231–7. doi:10.1084/jem.177.5.1231. PMC 2191011. PMID 8478605.
  30. ^ Sho M, Adachi M, Taki T, Hashida H, Konishi T, Huang CL, et al. (October 1998). "Transmembrane 4 superfamily as a prognostic factor in pancreatic cancer". International Journal of Cancer. 79 (5): 509–16. doi:10.1002/(sici)1097-0215(19981023)79:5<509::aid-ijc11>3.0.co;2-x. PMID 9761121.
  31. ^ Ovalle S, Gutiérrez-López MD, Olmo N, Turnay J, Lizarbe MA, Majano P, et al. (November 2007). "The tetraspanin CD9 inhibits the proliferation and tumorigenicity of human colon carcinoma cells". International Journal of Cancer. 121 (10): 2140–52. doi:10.1002/ijc.22902. PMID 17582603. S2CID 22410504.
  32. ^ Lin Q, Peng S, Yang Y (July 2018). "Inhibition of CD9 expression reduces the metastatic capacity of human hepatocellular carcinoma cell line MHCC97-H". International Journal of Oncology. 53 (1): 266–274. doi:10.3892/ijo.2018.4381. PMID 29749468.
  33. ^ Liang P, Miao M, Liu Z, Wang H, Jiang W, Ma S, et al. (2018). "CD9 expression indicates a poor outcome in acute lymphoblastic leukemia". Cancer Biomarkers. 21 (4): 781–786. doi:10.3233/CBM-170422. PMID 29286918.
  34. ^ Zöller M (January 2009). "Tetraspanins: push and pull in suppressing and promoting metastasis". Nature Reviews. Cancer. 9 (1): 40–55. doi:10.1038/nrc2543. PMID 19078974. S2CID 32065330.
  35. ^ Ventress JK, Partridge LJ, Read RC, Cozens D, MacNeil S, Monk PN (2016-07-28). "Peptides from Tetraspanin CD9 Are Potent Inhibitors of Staphylococcus Aureus Adherence to Keratinocytes". PLOS ONE. 11 (7): e0160387. Bibcode:2016PLoSO..1160387V. doi:10.1371/journal.pone.0160387. PMC 4965146. PMID 27467693.
  36. ^ Anzai N, Lee Y, Youn BS, Fukuda S, Kim YJ, Mantel C, et al. (June 2002). "C-kit associated with the transmembrane 4 superfamily proteins constitutes a functionally distinct subunit in human hematopoietic progenitors". Blood. 99 (12): 4413–21. doi:10.1182/blood.v99.12.4413. PMID 12036870.
  37. ^ a b Radford KJ, Thorne RF, Hersey P (May 1996). "CD63 associates with transmembrane 4 superfamily members, CD9 and CD81, and with beta 1 integrins in human melanoma". Biochemical and Biophysical Research Communications. 222 (1): 13–8. doi:10.1006/bbrc.1996.0690. PMID 8630057.
  38. ^ Mazzocca A, Carloni V, Sciammetta S, Cordella C, Pantaleo P, Caldini A, et al. (September 2002). "Expression of transmembrane 4 superfamily (TM4SF) proteins and their role in hepatic stellate cell motility and wound healing migration". Journal of Hepatology. 37 (3): 322–30. doi:10.1016/s0168-8278(02)00175-7. PMID 12175627.
  39. ^ Lozahic S, Christiansen D, Manié S, Gerlier D, Billard M, Boucheix C, Rubinstein E (March 2000). "CD46 (membrane cofactor protein) associates with multiple beta1 integrins and tetraspans". European Journal of Immunology. 30 (3): 900–7. doi:10.1002/1521-4141(200003)30:3<900::AID-IMMU900>3.0.CO;2-X. PMID 10741407.
  40. ^ Park KR, Inoue T, Ueda M, Hirano T, Higuchi T, Maeda M, et al. (March 2000). "CD9 is expressed on human endometrial epithelial cells in association with integrins alpha(6), alpha(3) and beta(1)". Molecular Human Reproduction. 6 (3): 252–7. doi:10.1093/molehr/6.3.252. PMID 10694273.
  41. ^ Hirano T, Higuchi T, Ueda M, Inoue T, Kataoka N, Maeda M, et al. (February 1999). "CD9 is expressed in extravillous trophoblasts in association with integrin alpha3 and integrin alpha5". Molecular Human Reproduction. 5 (2): 162–7. doi:10.1093/molehr/5.2.162. PMID 10065872.
  42. ^ Horváth G, Serru V, Clay D, Billard M, Boucheix C, Rubinstein E (November 1998). "CD19 is linked to the integrin-associated tetraspans CD9, CD81, and CD82". The Journal of Biological Chemistry. 273 (46): 30537–43. doi:10.1074/jbc.273.46.30537. PMID 9804823.
  43. ^ Charrin S, Le Naour F, Oualid M, Billard M, Faure G, Hanash SM, et al. (April 2001). "The major CD9 and CD81 molecular partner. Identification and characterization of the complexes". The Journal of Biological Chemistry. 276 (17): 14329–37. doi:10.1074/jbc.M011297200. PMID 11278880.
  44. ^ Stipp CS, Orlicky D, Hemler ME (February 2001). "FPRP, a major, highly stoichiometric, highly specific CD81- and CD9-associated protein". The Journal of Biological Chemistry. 276 (7): 4853–62. doi:10.1074/jbc.M009859200. PMID 11087758.
  45. ^ Tachibana I, Bodorova J, Berditchevski F, Zutter MM, Hemler ME (November 1997). "NAG-2, a novel transmembrane-4 superfamily (TM4SF) protein that complexes with integrins and other TM4SF proteins". The Journal of Biological Chemistry. 272 (46): 29181–9. doi:10.1074/jbc.272.46.29181. PMID 9360996.
  46. ^ Gutiérrez-López MD, Gilsanz A, Yáñez-Mó M, Ovalle S, Lafuente EM, Domínguez C, et al. (October 2011). "The sheddase activity of ADAM17/TACE is regulated by the tetraspanin CD9". Cellular and Molecular Life Sciences. 68 (19): 3275–92. doi:10.1007/s00018-011-0639-0. PMID 21365281. S2CID 23682577.
  47. ^ Gustafson-Wagner E, Stipp CS (2013). "The CD9/CD81 tetraspanin complex and tetraspanin CD151 regulate α3β1 integrin-dependent tumor cell behaviors by overlapping but distinct mechanisms". PLOS ONE. 8 (4): e61834. Bibcode:2013PLoSO...861834G. doi:10.1371/journal.pone.0061834. PMC 3629153. PMID 23613949.

추가 정보

외부 링크

  • UCSC Genome Browser의 인간 CD9 게놈 위치 및 CD9 유전자 세부 정보 페이지.