잘린 3헥타르 정사각형 타일

Truncated triheptagonal tiling
잘린 3헥타르 정사각형 타일
Truncated triheptagonal tiling
쌍곡면푸앵카레 디스크 모델
유형 쌍곡선 균일 타일링
꼭지점 구성 4.6.14
슐레플리 기호 tr{7,3} 또는 { Bmatrix}
와이토프 기호 2 7 3
콕시터 다이어그램 CDel 노드 1.pngCDel 7.pngCDel 노드 1.pngCDel 3.pngCDel 노드 1.png 또는
대칭군 [7,3], (*732)
이중 3-7키스롬빌 주문
특성. 정점 변환

기하학에서 잘린 3헥타르 정사각형 타일링은 쌍곡면의 반정형 타일링이다. 꼭지점에는 정사각형 1개, 육각형 1개, 사각형 14면체 1개가 있다. 그것은 tr{7,3}의 Schléfli 기호를 가지고 있다.

균일 배색

잘린 삼각형 타일링의 균일한 색상은 단 하나. (정점 주위의 색인에 의한 색상 이름 지정: 123).

대칭

이중 타일링의 삼각형은 3-7 kisrhombille로 대칭 그룹을 위한 Wythoff 구조의 기본 영역을 나타낸다[7,3].

Truncated triheptagonal tiling with mirrors.png H2checkers 237.png
이중 타일링은 헵탄 타일링의 완전한 이분법으로 만들어진 오더-3 이등분 헵탄 타일링이라고 불리며, 여기에는 삼각형 색상이 번갈아 나타난다.

관련 다면체 및 틸팅

이 타일링은 꼭지점 수치 (4.6.2p)와 Coxeter-Dynkin 도표를 가진 일련의 균일한 패턴의 구성원으로 간주될 수 있다. p < 6의 경우, 시퀀스의 구성원은 구면 기울기로서 아래에 표시된 전위절제 다면체(조노헤드론)이다. p > 6의 경우 잘린 3헥타르 타일링부터 시작하여 쌍곡면의 기울기이다.

*n32 전분해 틸팅의 대칭 변이: 4.6.2n
Sym.
*n32
[n,3]
구면 유클리드 콤팩트 하이퍼브. 파라코. 비대칭 쌍곡선
*232
[2,3]
*332
[3,3]
*432
[4,3]
*532
[5,3]
*632
[6,3]
*732
[7,3]
*832
[8,3]
*∞32
[∞,3]

[12i,3]

[9i,3]

[6i,3]

[3i,3]
수치 Spherical truncated trigonal prism.png Uniform tiling 332-t012.png Uniform tiling 432-t012.png Uniform tiling 532-t012.png Uniform polyhedron-63-t012.png Truncated triheptagonal tiling.svg H2-8-3-omnitruncated.svg H2 tiling 23i-7.png H2 tiling 23j12-7.png H2 tiling 23j9-7.png H2 tiling 23j6-7.png H2 tiling 23j3-7.png
구성. 4.6.4 4.6.6 4.6.8 4.6.10 4.6.12 4.6.14 4.6.16 4.6.∞ 4.6.24i 4.6.18i 4.6.12i 4.6.6i
듀얼스 Spherical hexagonal bipyramid.png Spherical tetrakis hexahedron.png Spherical disdyakis dodecahedron.png Spherical disdyakis triacontahedron.png Tiling Dual Semiregular V4-6-12 Bisected Hexagonal.svg H2checkers 237.png H2checkers 238.png H2checkers 23i.png H2 checkers 23j12.png H2 checkers 23j9.png H2 checkers 23j6.png H2 checkers 23j3.png
구성. V4.6.4 V4.6.6 V4.6.8 V4.6.10 V4.6.12 V4.6.14 V4.6.16 V4.6.1987 V4.6.24i V4.6.18i V4.6.12i V4.6.6i

와이토프 건설에서 8개의 쌍곡선 균일 기울기가 있는데, 이 기울기는 일반적인 헵탄 타일링에서 기초할 수 있다.

원래 얼굴에 붉은 색으로 칠해진 타일, 원래 꼭지점에 노란색, 그리고 원래 가장자리를 따라 파란색으로 칠한 타일을 그리면 8개의 형태가 있다.

균일한 헵탄/삼각형 틸팅
대칭: [7,3], (*732) [7,3]+, (732)
CDel node 1.pngCDel 7.pngCDel node.pngCDel 3.pngCDel node.png CDel node 1.pngCDel 7.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node.pngCDel 7.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node.pngCDel 7.pngCDel node 1.pngCDel 3.pngCDel node 1.png CDel node.pngCDel 7.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node 1.pngCDel 7.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node 1.pngCDel 7.pngCDel node 1.pngCDel 3.pngCDel node 1.png CDel node h.pngCDel 7.pngCDel node h.pngCDel 3.pngCDel node h.png
Heptagonal tiling.svg Truncated heptagonal tiling.svg Triheptagonal tiling.svg Truncated order-7 triangular tiling.svg Order-7 triangular tiling.svg Rhombitriheptagonal tiling.svg Truncated triheptagonal tiling.svg Snub triheptagonal tiling.svg
{7,3} t{7,3} r{7,3} t{3,7} {3,7} rr{7,3} tr{7,3} sr{7,3}
균일 듀얼
CDel node f1.pngCDel 7.pngCDel node.pngCDel 3.pngCDel node.png CDel node f1.pngCDel 7.pngCDel node f1.pngCDel 3.pngCDel node.png CDel node.pngCDel 7.pngCDel node f1.pngCDel 3.pngCDel node.png CDel node.pngCDel 7.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node.pngCDel 7.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel 7.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel 7.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node fh.pngCDel 7.pngCDel node fh.pngCDel 3.pngCDel node fh.png
Order-7 triangular tiling.svg Order-7 triakis triangular tiling.svg 7-3 rhombille tiling.svg Heptakis heptagonal tiling.svg Heptagonal tiling.svg Deltoidal triheptagonal tiling.svg 3-7 kisrhombille.svg 7-3 floret pentagonal tiling.svg
V73 V3.14.14 V3.7.3.7 V6.6.7 V37 V3.4.7.4 V4.6.14 V3.3.3.3.7

참고 항목

참조

  • 존 H. 콘웨이, 하이디 버기엘, 차임 굿맨-스트라스, 2008년 사물의 대칭, ISBN978-1-56881-220-5 (19장, 쌍곡선 아르키메데스 테셀레이션)
  • "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.

외부 링크