잘린 순서-8 팔각 타일링

Truncated order-8 octagonal tiling
잘린 순서-8 팔각 타일링
Truncated order-8 octagonal tiling
쌍곡면푸앵카레 디스크 모델
유형 쌍곡선 균일 타일링
꼭지점 구성 8.16.16
슐레플리 기호 t{8,8}
t(8,8,4)
와이토프 기호 2 8 4
콕시터 다이어그램 CDel node 1.pngCDel 8.pngCDel node 1.pngCDel 8.pngCDel node.png
CDel 3.pngCDel node 1.pngCDel 8.pngCDel node 1.pngCDel 8.pngCDel node 1.pngCDel 4.pngCDel 3.png
대칭군 [8,8], (*882)
[(8,8,4)], (*884)
이중 순서-8 옥타키 팔각 타일링
특성. 정점 변환

기하학에서 잘린 순서-8 팔각 타일링쌍곡면의 균일한 타일링이다. 그것은0,1 t{8,8}의 Schléfli 기호를 가지고 있다.

균일 배색

이 타일링은 또한 세 가지 색상의 면으로 *884 대칭으로 제작할 수 있다.

H2 tiling 488-7.png

관련 다면체 및 타일링

균일한 8각형 틸팅
대칭: [8,8], (*882)
CDel node 1.pngCDel 8.pngCDel node.pngCDel 8.pngCDel node.png = CDel nodes 10ru.pngCDel split2-88.pngCDel node.png
= CDel node h1.pngCDel 4.pngCDel node.pngCDel 8.pngCDel node.png
CDel node 1.pngCDel 8.pngCDel node 1.pngCDel 8.pngCDel node.png = CDel nodes 10ru.pngCDel split2-88.pngCDel node 1.png
= CDel node h1.pngCDel 4.pngCDel node.pngCDel 8.pngCDel node 1.png
CDel node.pngCDel 8.pngCDel node 1.pngCDel 8.pngCDel node.png = CDel nodes.pngCDel split2-88.pngCDel node 1.png
= CDel node h0.pngCDel 4.pngCDel node.pngCDel 8.pngCDel node 1.png
CDel node.pngCDel 8.pngCDel node 1.pngCDel 8.pngCDel node 1.png = CDel nodes 01rd.pngCDel split2-88.pngCDel node 1.png
= CDel node h1.pngCDel 4.pngCDel node.pngCDel 8.pngCDel node 1.png
CDel node.pngCDel 8.pngCDel node.pngCDel 8.pngCDel node 1.png = CDel nodes 01rd.pngCDel split2-88.pngCDel node.png
= CDel node h1.pngCDel 4.pngCDel node.pngCDel 8.pngCDel node.png
CDel node 1.pngCDel 8.pngCDel node.pngCDel 8.pngCDel node 1.png = CDel nodes 11.pngCDel split2-88.pngCDel node.png
= CDel node h0.pngCDel 4.pngCDel node 1.pngCDel 8.pngCDel node.png
CDel node 1.pngCDel 8.pngCDel node 1.pngCDel 8.pngCDel node 1.png = CDel nodes 11.pngCDel split2-88.pngCDel node 1.png
= CDel node h0.pngCDel 4.pngCDel node 1.pngCDel 8.pngCDel node 1.png
H2 tiling 288-1.png H2 tiling 288-3.png H2 tiling 288-2.png H2 tiling 288-6.png H2 tiling 288-4.png H2 tiling 288-5.png H2 tiling 288-7.png
{8,8} t{8,8}
r{8,8} 2t{8,8}=t{8,8} 2r{8,8}={8,8} rr{8,8} tr{8,8}
균일 듀얼
CDel node f1.pngCDel 8.pngCDel node.pngCDel 8.pngCDel node.png CDel node f1.pngCDel 8.pngCDel node f1.pngCDel 8.pngCDel node.png CDel node.pngCDel 8.pngCDel node f1.pngCDel 8.pngCDel node.png CDel node.pngCDel 8.pngCDel node f1.pngCDel 8.pngCDel node f1.png CDel node.pngCDel 8.pngCDel node.pngCDel 8.pngCDel node f1.png CDel node f1.pngCDel 8.pngCDel node.pngCDel 8.pngCDel node f1.png CDel node f1.pngCDel 8.pngCDel node f1.pngCDel 8.pngCDel node f1.png
H2chess 288b.png H2chess 288f.png H2chess 288a.png H2chess 288e.png H2chess 288c.png H2chess 288d.png H2checkers 288.png
V88 V8.16.16 V8.8.8.8 V8.16.16 V88 V4.8.4.8 V4.16.16
교대
[1+,8,8]
(*884)
[8+,8]
(8*4)
[8,1+,8]
(*4242)
[8,8+]
(8*4)
[8,8,1+]
(*884)
[(8,8,2+)]
(2*44)
[8,8]+
(882)
CDel node h1.pngCDel 8.pngCDel node.pngCDel 8.pngCDel node.png = CDel label4.pngCDel branch 10ru.pngCDel split2-88.pngCDel node.png CDel node h.pngCDel 8.pngCDel node h.pngCDel 8.pngCDel node.png CDel node.pngCDel 8.pngCDel node h1.pngCDel 8.pngCDel node.png = CDel nodes 11.pngCDel 4a4b-cross.pngCDel nodes.png CDel node.pngCDel 8.pngCDel node h.pngCDel 8.pngCDel node h.png CDel node.pngCDel 8.pngCDel node.pngCDel 8.pngCDel node h1.png = CDel node.pngCDel split1-88.pngCDel branch 01ld.png CDel node h.pngCDel 8.pngCDel node.pngCDel 8.pngCDel node h.png = CDel nodes hh.pngCDel split2-88.pngCDel node.png
= CDel node h0.pngCDel 4.pngCDel node h.pngCDel 8.pngCDel node.png
CDel node h.pngCDel 8.pngCDel node h.pngCDel 8.pngCDel node h.png = CDel nodes hh.pngCDel split2-88.pngCDel node h.png
= CDel node h0.pngCDel 4.pngCDel node h.pngCDel 8.pngCDel node h.png
Uniform tiling 88-h0.png Uniform tiling 444-t0.png Uniform tiling 88-h0.png Uniform tiling 443-t1.png Uniform tiling 88-snub.png
h{8,8} s{8,8} hr{8,8} s{8,8} h{8,8} 흐르{8,8} sr{8,8}
교류 듀얼
CDel node fh.pngCDel 8.pngCDel node.pngCDel 8.pngCDel node.png CDel node fh.pngCDel 8.pngCDel node fh.pngCDel 8.pngCDel node.png CDel node.pngCDel 8.pngCDel node fh.pngCDel 8.pngCDel node.png CDel node.pngCDel 8.pngCDel node fh.pngCDel 8.pngCDel node fh.png CDel node.pngCDel 8.pngCDel node.pngCDel 8.pngCDel node fh.png CDel node fh.pngCDel 8.pngCDel node.pngCDel 8.pngCDel node fh.png CDel node fh.pngCDel 8.pngCDel node fh.pngCDel 8.pngCDel node fh.png
Uniform tiling 88-t1.png Uniform tiling 66-t1.png
V(4.8)8 V3.4.3.8.3.8 V(4.4)4 V3.4.3.8.3.8 V(4.8)8 V46 V3.3.8.3.8

대칭

타일링의 이중은 (*884) 궤도 대칭의 기본 영역을 나타낸다. [(8,8,4)](*884) 대칭부터 거울 제거 및 교대 연산자에 의한 15개의 작은 지수 부분군(11개 고유)이 있다. 거울은 가지 주문이 모두 균등하면 제거할 수 있고, 주변 가지 주문을 절반으로 줄일 수 있다. 거울 두 개를 제거하면 제거된 거울이 만나는 곳에 반차량의 회전 지점이 남게 된다. 이러한 이미지에서 기본 도메인은 흑백으로 번갈아 가며 색상의 경계에는 거울이 존재한다. 대칭은 기본 영역을 가로지르는 이등분 거울을 추가하여 882 대칭으로 두 배가 될 수 있다. 부분군 지수-8 그룹 [(1,8+,1+,8,1+,44)](442442)은 [(8,8,4)]의 정류자 하위 그룹이다.

[(8,8,4)](*884)의 작은 인덱스 하위 그룹
기본
도메인
H2checkers 488.png H2chess 488e.png
H2chess 488b.png
H2chess 488f.png
H2chess 488c.png
H2chess 488d.png
H2chess 488a.png
H2chess 488b.png
H2chess 488c.png
H2chess 488a.png
부분군 지수 1 2 4
콕시터 [(8,8,4)]
CDel node.pngCDel split1-88.pngCDel branch.pngCDel label4.png
[(1+,8,8,4)]
CDel node c1.pngCDel split1-88.pngCDel branch h0c2.pngCDel label4.png
[(8,8,1+,4)]
CDel node c1.pngCDel split1-88.pngCDel branch c3h0.pngCDel label4.png
[(8,1+,8,4)]
CDel labelh.pngCDel node.pngCDel split1-88.pngCDel branch c3-2.pngCDel label4.png
[(1+,8,8,1+,4)]
CDel labelh.pngCDel node.pngCDel split1-88.pngCDel branch c3h0.pngCDel label4.png
[(8+,8+,4)]
CDel node c1.pngCDel split1-88.pngCDel branch h0h0.pngCDel label4.png
궤도의 *884 *8482 *4444 2*4444 442×
콕시터 [(8,8+,4)]
CDel node h2.pngCDel split1-88.pngCDel branch c3h2.pngCDel label4.png
[(8+,8,4)]
CDel node h2.pngCDel split1-88.pngCDel branch h2c2.pngCDel label4.png
[(8,8,4+)]
CDel node c1.pngCDel split1-88.pngCDel branch h2h2.pngCDel label4.png
[(8,1+,8,1+,4)]
CDel labelh.pngCDel node.pngCDel split1-88.pngCDel branch h0c2.pngCDel label4.png
[(1+,8,1+,8,4)]
CDel node h4.pngCDel split1-88.pngCDel branch h2h2.pngCDel label4.png
오비폴드 8*42 4*44 4*4242
직접 부분군
부분군 지수 2 4 8
콕시터 [(8,8,4)]+
CDel node h2.pngCDel split1-88.pngCDel branch h2h2.pngCDel label4.png
[(1+,8,8+,4)]
CDel node h2.pngCDel split1-88.pngCDel branch h0h2.pngCDel label4.png
[(8+,8,1+,4)]
CDel node h2.pngCDel split1-88.pngCDel branch h2h0.pngCDel label4.png
[(8,1+,8,4+)]
CDel labelh.pngCDel node.pngCDel split1-88.pngCDel branch h2h2.pngCDel label4.png
[(1+,8,1+,8,1+,4)] = [(8+,8+,4+)]
CDel node h4.pngCDel split1-88.pngCDel branch h4h4.pngCDel label4.png
오비폴드 844 8482 4444 442442

참조

  • 존 H. 콘웨이, 하이디 버기엘, 차임 굿맨-스트라스, 2008년 사물의 대칭, ISBN978-1-56881-220-5 (19장, 쌍곡선 아르키메데스 테셀레이션)
  • "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.

참고 항목

외부 링크