Rhombitriapeirogonal tiling

Rhombitriapeirogonal tiling
Rhombitriapeirogonal tiling
Rhombitriapeirogonal tiling
쌍곡면푸앵카레 디스크 모델
유형 쌍곡선 균일 타일링
꼭지점 구성 3.4.∞.4
슐레플리 기호 rr{reas,3} { 3 r
s2{3,7}
와이토프 기호 3 ∞ 2
콕시터 다이어그램 CDel node 1.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node 1.png 또는
CDel node 1.pngCDel infin.pngCDel node h.pngCDel 3.pngCDel node h.png
대칭군 [∞,3], (*∞32)
[∞,3+], (3*∞)
이중 델토이탈삼각형 타일링
특성. 정점 변환

기하학에서, Rhombtriapeirogonal tiling쌍곡면균일한 타일링이며, Rr{laim,3}의 Schléfli 기호가 있다.

대칭

이 타일링은 대칭[ [,3], (*∞32)이 있다. 단 하나의 균일한 색상이 있을 뿐이다.

유클리드 루빗리헥스각형 타일링과 유사하게, 가장자리 색상에 의해 절반 대칭 형태(3*㎛)의 궤도형 표기법이 있다. 애피레오곤은 두 가지 유형의 가장자리가 있는 잘린 t{{∞}로 간주할 수 있다. Coxeter 다이어그램 , Schléfli 기호 s2{3,164}가 있다. 정사각형은 이소체 사다리꼴로 변형될 수 있다. 직사각형이 가장자리로 변질되는 한계에서 무한 순서삼각 타일링이 나타나며, 스너브 3각 타일링으로 구성된다.

관련 다면체 및 타일링

[1968,3] 패밀리의 파라콤팩트 유니폼 틸팅
대칭: [∞,3], (*∞32) [∞,3]+
(∞32)
[1+,∞,3]
(*∞33)
[∞,3+]
(3*∞)
CDel node 1.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node.png CDel node 1.pngCDel infin.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node.pngCDel infin.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node.pngCDel infin.pngCDel node 1.pngCDel 3.pngCDel node 1.png CDel node.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node 1.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node 1.pngCDel infin.pngCDel node 1.pngCDel 3.pngCDel node 1.png CDel node h.pngCDel infin.pngCDel node h.pngCDel 3.pngCDel node h.png CDel node h1.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node.png CDel node h1.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node.pngCDel infin.pngCDel node h.pngCDel 3.pngCDel node h.png
CDel node h0.pngCDel infin.pngCDel node 1.pngCDel 3.pngCDel node.png
= CDel labelinfin.pngCDel branch 11.pngCDel split2.pngCDel node.png
CDel node h0.pngCDel infin.pngCDel node 1.pngCDel 3.pngCDel node 1.png
= CDel labelinfin.pngCDel branch 11.pngCDel split2.pngCDel node 1.png
CDel node h0.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node 1.png
= CDel labelinfin.pngCDel branch.pngCDel split2.pngCDel node 1.png
CDel node 1.pngCDel infin.pngCDel node h.pngCDel 3.pngCDel node h.png CDel node h1.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node.png =
CDel labelinfin.pngCDel branch 10ru.pngCDel split2.pngCDel node.png 또는
CDel node h1.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node 1.png =
CDel labelinfin.pngCDel branch 10ru.pngCDel split2.pngCDel node 1.png 또는
CDel node h0.pngCDel infin.pngCDel node h.pngCDel 3.pngCDel node h.png
= CDel labelinfin.pngCDel branch hh.pngCDel split2.pngCDel node h.png
H2-I-3-dual.svg H2 tiling 23i-3.png H2 tiling 23i-2.png H2 tiling 23i-6.png H2 tiling 23i-4.png H2 tiling 23i-5.png H2 tiling 23i-7.png Uniform tiling i32-snub.png H2 tiling 33i-1.png H2 snub 33ia.png
{∞,3} t{{{propert,3} r{{{195,3} t{3,7} {3,∞} rr{reas,3} tr{propert,3} sr{sr,3} h{{{no,3} h2{{{no,3} s{3,7}
균일 듀얼
CDel node f1.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node.png CDel node f1.pngCDel infin.pngCDel node f1.pngCDel 3.pngCDel node.png CDel node.pngCDel infin.pngCDel node f1.pngCDel 3.pngCDel node.png CDel node.pngCDel infin.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel infin.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node fh.pngCDel infin.pngCDel node fh.pngCDel 3.pngCDel node fh.png CDel node fh.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node.png CDel node.pngCDel infin.pngCDel node fh.pngCDel 3.pngCDel node fh.png
H2 tiling 23i-4.png Ord-infin triakis triang til.png Ord3infin qreg rhombic til.png H2checkers 33i.png H2-I-3-dual.svg Deltoidal triapeirogonal til.png H2checkers 23i.png Order-3-infinite floret pentagonal tiling.png Alternate order-3 apeirogonal tiling.png
V∞3 V3.1987.1987 V(3.219) V6.6.1987 V3 V4.3.4.1987 V4.6.1987 V3.3.3.3.1987 V(3.319) V3.3.3.3.3.1987

대칭 돌연변이

이 쌍곡선 타일링은 꼭지점 구성(3.4.n.4)과 [n,3] Coxeter 그룹 대칭이 있는 균일한 통칭 다면체의 일부로서 위상학적으로 관련이 있다.

*n42 확장 틸팅의 대칭 돌연변이: 3.4.n.4
대칭
*n32
[n,3]
구면 유클리드 콤팩트 하이퍼브. 파라코. 비대칭 쌍곡선
*232
[2,3]
*332
[3,3]
*432
[4,3]
*532
[5,3]
*632
[6,3]
*732
[7,3]
*832
[8,3]...
*∞32
[∞,3]

[12i,3]

[9i,3]

[6i,3]
피겨 Spherical triangular prism.png Uniform tiling 332-t02.png Uniform tiling 432-t02.png Uniform tiling 532-t02.png Uniform polyhedron-63-t02.png Rhombitriheptagonal tiling.svg H2-8-3-cantellated.svg H2 tiling 23i-5.png H2 tiling 23j12-5.png H2 tiling 23j9-5.png H2 tiling 23j6-5.png
구성. 3.4.2.4 3.4.3.4 3.4.4.4 3.4.5.4 3.4.6.4 3.4.7.4 3.4.8.4 3.4.∞.4 3.4.12i.4 3.4.9i.4 3.4.6i.4

참고 항목

참조

  • 존 H. 콘웨이, 하이디 버기엘, 차임 굿맨-스트라스, 2008년 사물의 대칭, ISBN978-1-56881-220-5 (19장, 쌍곡선 아르키메데스 테셀레이션)
  • "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.

외부 링크