교대 팔각 타일링

Alternated octagonal tiling
교대 팔각 타일링
Alternated octagonal tiling
쌍곡면푸앵카레 디스크 모델
유형 쌍곡선 균일 타일링
꼭지점 구성 (3.4)3
슐레플리 기호 (4,3,3)
s(4,4,4)
와이토프 기호 3 3 4
콕시터 다이어그램 CDel label4.pngCDel branch 10ru.pngCDel split2.pngCDel node.png
CDel label4.pngCDel branch hh.pngCDel split2-44.pngCDel node h.png
대칭군 [(4,3,3)], (*433)
[(4,4,4)]+, (444)
이중 교대 팔각 타일링#듀얼 타일링
특성. 정점 변환

기하학에서 삼중수소각형 타일링 또는 교대된 팔각 타일링쌍곡면균일타일링이다. {(4,3,3)} 또는 h{8,3}의 Schléfli 기호를 가지고 있다.

기하학

일련의 가장자리가 직선을 나타내는 것처럼 보이지만(곡선으로 투영됨) 주의 깊게 보면 다른 투영 중심에서 볼 수 있듯이 직선이 아니라는 것을 알 수 있다.

Uniform tiling 433-t0 3-fold.png
삼각형 중심
쌍곡선 직선 가장자리
Uniform tiling 433-t0 edgecenter.png
모서리 중심
투사 직선 가장자리
Uniform tiling 433-t0 point.png
포인트 중심
투사 직선 가장자리

이중 타일링

Uniform dual tiling 433-t0.png

예술에서

Circle Limit III는 네덜란드 화가 M. C. 에셔가 1959년에 만든 목판화인데, '한없이 멀리 떨어진 곳에서 물고기들이 로켓처럼 솟구친다' '그들이 왔을 때 다시 떨어진다'는 내용이다. 그림 내의 흰색 곡선은 각 물고기 선의 중간을 통해 평면을 삼각형 타일링 패턴의 정사각형과 삼각형으로 나눈다. 그러나 삼중수소각 타일링에서 해당 곡선은 쌍곡선 세그먼트의 사슬로 각 꼭지점에 약간의 각도가 있는 반면, 에셔의 목판화에서는 매끄러운 하이퍼 사이클로 보인다.

관련 다면체 및 타일링

균일(4,3,3) 틸팅
대칭: [(4,3,3)], (*433) [(4,3,3)]+, (433)
CDel label4.pngCDel branch 01rd.pngCDel split2.pngCDel node.png CDel label4.pngCDel branch 11.pngCDel split2.pngCDel node.png CDel label4.pngCDel branch 10ru.pngCDel split2.pngCDel node.png CDel label4.pngCDel branch 10ru.pngCDel split2.pngCDel node 1.png CDel label4.pngCDel branch.pngCDel split2.pngCDel node 1.png CDel label4.pngCDel branch 01rd.pngCDel split2.pngCDel node 1.png CDel label4.pngCDel branch 11.pngCDel split2.pngCDel node 1.png CDel label4.pngCDel branch hh.pngCDel split2.pngCDel node h.png
CDel node h1.pngCDel 8.pngCDel node.pngCDel 3.pngCDel node.png CDel node h0.pngCDel 8.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node h1.pngCDel 8.pngCDel node.pngCDel 3.pngCDel node.png CDel node h1.pngCDel 8.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node h0.pngCDel 8.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node h1.pngCDel 8.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node h0.pngCDel 8.pngCDel node 1.pngCDel 3.pngCDel node 1.png CDel node h0.pngCDel 8.pngCDel node h.pngCDel 3.pngCDel node h.png
H2 tiling 334-1.png H2 tiling 334-3.png H2 tiling 334-2.png H2 tiling 334-6.png H2 tiling 334-4.png H2 tiling 334-5.png H2 tiling 334-7.png Uniform tiling 433-snub2.png
h{8,3}
t0(4,3,3)
r{3,8}1/2
t0,1(4,3,3)
h{8,3}
t1(4,3,3)
h2{8,3}
t1,2(4,3,3)
{3,8}1/2
t2(4,3,3)
h2{8,3}
t0,2(4,3,3)
t{3,8}1/2
t0,1,2(4,3,3)
s{3,8}1/2
s(4,3,3)
균일 듀얼
Uniform dual tiling 433-t0.png Uniform dual tiling 433-t01.png Uniform dual tiling 433-t0.png Uniform dual tiling 433-t12.png H2-8-3-dual.svg Uniform dual tiling 433-t12.png H2-8-3-kis-dual.svg Uniform dual tiling 433-snub.png
V(3.4)3 V3.8.3.8 V(3.4)3 V3.6.4.6 V(3.3)4 V3.6.4.6 V6.6.8 V3.3.3.3.3.4
균일(4,4,4) 틸팅
대칭: [(4,4,4)], (*444) [(4,4,4)]+
(444)
[(1+,4,4,4)]
(*4242)
[(4+,4,4)]
(4*22)
CDel label4.pngCDel branch 01rd.pngCDel split2-44.pngCDel node.png
CDel node h1.pngCDel 8.pngCDel node.pngCDel 4.pngCDel node.png
CDel label4.pngCDel branch 01rd.pngCDel split2-44.pngCDel node 1.png
CDel node h1.pngCDel 8.pngCDel node.pngCDel 4.pngCDel node 1.png
CDel label4.pngCDel branch.pngCDel split2-44.pngCDel node 1.png
CDel node h0.pngCDel 8.pngCDel node.pngCDel 4.pngCDel node 1.png
CDel label4.pngCDel branch 10ru.pngCDel split2-44.pngCDel node 1.png
CDel node h1.pngCDel 8.pngCDel node.pngCDel 4.pngCDel node 1.png
CDel label4.pngCDel branch 10ru.pngCDel split2-44.pngCDel node.png
CDel node h1.pngCDel 8.pngCDel node.pngCDel 4.pngCDel node.png
CDel label4.pngCDel branch 11.pngCDel split2-44.pngCDel node.png
CDel node h0.pngCDel 8.pngCDel node 1.pngCDel 4.pngCDel node.png
CDel label4.pngCDel branch 11.pngCDel split2-44.pngCDel node 1.png
CDel node h0.pngCDel 8.pngCDel node 1.pngCDel 4.pngCDel node 1.png
CDel label4.pngCDel branch hh.pngCDel split2-44.pngCDel node h.png
CDel node h0.pngCDel 8.pngCDel node h.pngCDel 4.pngCDel node h.png
CDel label4.pngCDel branch.pngCDel split2-44.pngCDel node h1.png
CDel node h0.pngCDel 8.pngCDel node.pngCDel 4.pngCDel node h1.png
CDel label4.pngCDel branch hh.pngCDel split2-44.pngCDel node.png
CDel node h0.pngCDel 8.pngCDel node h1.pngCDel 4.pngCDel node.png
H2 tiling 444-1.png H2 tiling 444-3.png H2 tiling 444-2.png H2 tiling 444-6.png H2 tiling 444-4.png H2 tiling 444-5.png H2 tiling 444-7.png Uniform tiling 444-snub.png H2 tiling 288-4.png H2 tiling 344-2.png
t0(4,4,4)
h{8,4}
t0,1(4,4,4)
h2{8,4}
t1(4,4,4)
{4,8}1/2
t1,2(4,4,4)
h2{8,4}
t2(4,4,4)
h{8,4}
t0,2(4,4,4)
r{4,8}1/2
t0,1,2(4,4,4)
t{4,8}1/2
s(4,4,4)
s{4,8}1/2
h(4,4,4)
h{4,8}1/2
hr (4,4,4)
hr{4,8}1/2
균일 듀얼
H2chess 444b.png H2chess 444f.png H2chess 444a.png H2chess 444e.png H2chess 444c.png H2chess 444d.png H2checkers 444.png Uniform dual tiling 433-t0.png H2 tiling 288-1.png H2 tiling 266-2.png
V(4.4)4 V4.8.4.8 V(4.4)4 V4.8.4.8 V(4.4)4 V4.8.4.8 V8.8.8 V3.4.3.4.3.4 V88 V(4,4)3

참고 항목

참조

  • 존 H. 콘웨이, 하이디 버기엘, 차임 굿맨-스트라스, 2008년 사물의 대칭, ISBN978-1-56881-220-5 (19장, 쌍곡선 아르키메데스 테셀레이션)
  • "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.

외부 링크