사팔각형 타일링

Tetraheptagonal tiling
사팔각형 타일링
Tetraheptagonal tiling
쌍곡면푸앵카레 원반 모형
유형 쌍곡선 균일 타일링
정점 구성 (4.7)2
슐레플리 기호 r{7,4} 또는{.4
rr{7,7}
위토프 기호 2 7 4
7 7 2
콕서터 다이어그램 CDel node.pngCDel 7.pngCDel node 1.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 7.pngCDel node.pngCDel 7.pngCDel node 1.png
대칭군 [7,4], (*742)
[7,7], (*772)
듀얼 주문-7-4 마름모 타일링
특성. 정점-이행 엣지 전이성

기하학에서 사팔각형 타일링쌍곡면의 균일한 타일링입니다.Schléfli 기호는 r{4,7}입니다.

대칭

Uniform tiling 77-t02.png
반대칭 [1+,4,7] = [7,7] 구조가 존재하며, 이는 두 가지 색상의 헵타곤으로 볼 수 있다.이 색은 마름모꼴 헵타각형 타일링이라고 불립니다.
Ord74 qreg rhombic til.png
듀얼 타일은 마름모꼴 면으로 제작되며 면 구성은 V4.7.4.7입니다.

관련 다면체 및 타일링

*n42 준규격 타일링 대칭 돌연변이: (4.n)2
대칭
*4n2
[n,4]
구면 유클리드 콤팩트 쌍곡선 파라콤팩트 콤팩트하지 않다
*342
[3,4]
*442
[4,4]
*542
[5,4]
*642
[6,4]
*742
[7,4]
*842
[8,4]...
*∞42
[∞,4]

[,4]
수치 Uniform tiling 432-t1.png Uniform tiling 44-t1.png H2-5-4-rectified.svg H2 tiling 246-2.png H2 tiling 247-2.png H2 tiling 248-2.png H2 tiling 24i-2.png
설정. (4.3)2 (4.4)2 (4.5)2 (4.6)2 (4.7)2 (4.8)2 (4.2199) (4.ni)2
균일 칠각형/사각형 타일링
대칭: [7,4], (*742) [7,4]+, (742) [7+,4], (7*2) [7,4,1+], (*772)
CDel node 1.pngCDel 7.pngCDel node.pngCDel 4.pngCDel node.png CDel node 1.pngCDel 7.pngCDel node 1.pngCDel 4.pngCDel node.png CDel node.pngCDel 7.pngCDel node 1.pngCDel 4.pngCDel node.png CDel node.pngCDel 7.pngCDel node 1.pngCDel 4.pngCDel node 1.png CDel node.pngCDel 7.pngCDel node.pngCDel 4.pngCDel node 1.png CDel node 1.pngCDel 7.pngCDel node.pngCDel 4.pngCDel node 1.png CDel node 1.pngCDel 7.pngCDel node 1.pngCDel 4.pngCDel node 1.png CDel node h.pngCDel 7.pngCDel node h.pngCDel 4.pngCDel node h.png CDel node h.pngCDel 7.pngCDel node h.pngCDel 4.pngCDel node.png CDel node.pngCDel 7.pngCDel node.pngCDel 4.pngCDel node h.png
Uniform tiling 74-t0.png Uniform tiling 74-t01.png Uniform tiling 74-t1.png Uniform tiling 74-t12.png Uniform tiling 74-t2.png Uniform tiling 74-t02.png Uniform tiling 74-t012.png Uniform tiling 74-snub.png Uniform tiling 74-h01.png Uniform tiling 77-t0.png
{7,4} t{7,4} r{7,4} 2t{7,4}=t{4,7} 2r{7,4}={4,7} rr{7,4} tr{7,4} sr{7,4} s{7,4} h{4,7}
균일한 이중화
CDel node f1.pngCDel 7.pngCDel node.pngCDel 4.pngCDel node.png CDel node f1.pngCDel 7.pngCDel node f1.pngCDel 4.pngCDel node.png CDel node.pngCDel 7.pngCDel node f1.pngCDel 4.pngCDel node.png CDel node.pngCDel 7.pngCDel node f1.pngCDel 4.pngCDel node f1.png CDel node.pngCDel 7.pngCDel node.pngCDel 4.pngCDel node f1.png CDel node f1.pngCDel 7.pngCDel node.pngCDel 4.pngCDel node f1.png CDel node f1.pngCDel 7.pngCDel node f1.pngCDel 4.pngCDel node f1.png CDel node fh.pngCDel 7.pngCDel node fh.pngCDel 4.pngCDel node fh.png CDel node fh.pngCDel 7.pngCDel node fh.pngCDel 4.pngCDel node.png CDel node.pngCDel 7.pngCDel node.pngCDel 4.pngCDel node fh.png
Uniform tiling 74-t2.png Hyperbolic domains 772.png Ord74 qreg rhombic til.png Order4 heptakis heptagonal til.png Uniform tiling 74-t0.png Deltoidal tetraheptagonal til.png Hyperbolic domains 742.png Uniform tiling 77-t2.png
V74 V4.14.14 V4.7.4.7 V7.8.8 V47 V4.4.7.4 V4.8.14 V3.3.4.3.7 V3.3.7.3.7 V77
균일 칠각 타일링
대칭: [7,7], (*772) [7,7]+, (772)
CDel node 1.pngCDel 7.pngCDel node.pngCDel 7.pngCDel node.png = CDel nodes 10ru.pngCDel split2-77.pngCDel node.png
= CDel node h1.pngCDel 4.pngCDel node.pngCDel 7.pngCDel node.png
CDel node 1.pngCDel 7.pngCDel node 1.pngCDel 7.pngCDel node.png = CDel nodes 10ru.pngCDel split2-77.pngCDel node 1.png
= CDel node h1.pngCDel 4.pngCDel node.pngCDel 7.pngCDel node 1.png
CDel node.pngCDel 7.pngCDel node 1.pngCDel 7.pngCDel node.png = CDel nodes.pngCDel split2-77.pngCDel node 1.png
= CDel node h0.pngCDel 4.pngCDel node.pngCDel 7.pngCDel node 1.png
CDel node.pngCDel 7.pngCDel node 1.pngCDel 7.pngCDel node 1.png = CDel nodes 01rd.pngCDel split2-77.pngCDel node 1.png
= CDel node h1.pngCDel 4.pngCDel node.pngCDel 7.pngCDel node 1.png
CDel node.pngCDel 7.pngCDel node.pngCDel 7.pngCDel node 1.png = CDel nodes 01rd.pngCDel split2-77.pngCDel node.png
= CDel node h1.pngCDel 4.pngCDel node.pngCDel 7.pngCDel node.png
CDel node 1.pngCDel 7.pngCDel node.pngCDel 7.pngCDel node 1.png = CDel nodes 11.pngCDel split2-77.pngCDel node.png
= CDel node h0.pngCDel 4.pngCDel node 1.pngCDel 7.pngCDel node.png
CDel node 1.pngCDel 7.pngCDel node 1.pngCDel 7.pngCDel node 1.png =CDel nodes 11.pngCDel split2-77.pngCDel node 1.png
= CDel node h0.pngCDel 4.pngCDel node 1.pngCDel 7.pngCDel node 1.png
CDel node h.pngCDel 7.pngCDel node h.pngCDel 7.pngCDel node h.png =CDel nodes hh.pngCDel split2-77.pngCDel node h.png
= CDel node h0.pngCDel 4.pngCDel node h.pngCDel 7.pngCDel node h.png
Uniform tiling 77-t0.png Uniform tiling 77-t01.png Uniform tiling 77-t1.png Uniform tiling 77-t12.png Uniform tiling 77-t2.png Uniform tiling 77-t02.png Uniform tiling 77-t012.png Uniform tiling 77-snub.png
{7,7} t{7,7}
r{7,7} 2t{7,7}=t{7,7} 2r{7,7}={7,7} rr{7,7} tr{7,7} sr{7,7}
균일한 이중화
CDel node f1.pngCDel 7.pngCDel node.pngCDel 7.pngCDel node.png CDel node f1.pngCDel 7.pngCDel node f1.pngCDel 7.pngCDel node.png CDel node.pngCDel 7.pngCDel node f1.pngCDel 7.pngCDel node.png CDel node.pngCDel 7.pngCDel node f1.pngCDel 7.pngCDel node f1.png CDel node.pngCDel 7.pngCDel node.pngCDel 7.pngCDel node f1.png CDel node f1.pngCDel 7.pngCDel node.pngCDel 7.pngCDel node f1.png CDel node f1.pngCDel 7.pngCDel node f1.pngCDel 7.pngCDel node f1.png CDel node fh.pngCDel 7.pngCDel node fh.pngCDel 7.pngCDel node fh.png
Uniform tiling 77-t2.png Order7 heptakis heptagonal til.png Uniform tiling 74-t2.png Order7 heptakis heptagonal til.png Uniform tiling 77-t0.png Ord74 qreg rhombic til.png Hyperbolic domains 772.png
V77 V7.14.14 V7.7.7 V7.14.14 V77 V4.7.4.7 V4.14.14 V3.3.7.3.7
준규격 다면체와 타일링의 치수 패밀리: 7.n.7.n
대칭
*7n2
[n,7]
쌍곡선... 파라콤팩트 콤팩트하지 않다
*732
[3,7]
*742
[4,7]
*752
[5,7]
*762
[6,7]
*772
[7,7]
*872
[8,7]...
*∞72
[∞,7]

[i/i/i/i/7]
콕서터 CDel node.pngCDel 3.pngCDel node 1.pngCDel 7.pngCDel node.png CDel node.pngCDel 4.pngCDel node 1.pngCDel 7.pngCDel node.png CDel node.pngCDel 5.pngCDel node 1.pngCDel 7.pngCDel node.png CDel node.pngCDel 6.pngCDel node 1.pngCDel 7.pngCDel node.png CDel node.pngCDel 7.pngCDel node 1.pngCDel 7.pngCDel node.png CDel node.pngCDel 8.pngCDel node 1.pngCDel 7.pngCDel node.png CDel node.pngCDel infin.pngCDel node 1.pngCDel 7.pngCDel node.png CDel node.pngCDel ultra.pngCDel node 1.pngCDel 7.pngCDel node.png
준규격
수치
배열
Triheptagonal tiling.svg
3.7.3.7
H2 tiling 247-2.png
4.7.4.7
H2 tiling 257-2.png
7.5.7.5
H2 tiling 267-2.png
7.6.7.6
H2 tiling 277-2.png
7.7.7.7
H2 tiling 278-2.png
7.8.7.8
H2 tiling 25i-2.png
7.∞.7.∞

7.∞.7.∞

「 」를 참조해 주세요.

레퍼런스

  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN978-1-56881-220-5(19장, 쌍곡 아르키메데스 테셀레이션)
  • "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.

외부 링크