스너브 옥타각형 타일링
Snub octaoctagonal tiling스너브 옥타각형 타일링 | |
---|---|
쌍곡면의 푸앵카레 디스크 모델 | |
유형 | 쌍곡선 균일 타일링 |
꼭지점 구성 | 3.3.8.3.8 |
슐레플리 기호 | s{8,4} sr{8,8} |
와이토프 기호 | 8 8 2 |
콕시터 다이어그램 | 또는 |
대칭군 | [8,8]+, (882) [8+,4], (8*2) |
이중 | 주문-8-8 플로어 육각형 타일링 |
특성. | 정점 변환 |
기하학에서 스너브 옥타각형 타일링은 쌍곡면의 균일한 타일링이다. sr{8,8}의 Schléfli 기호를 가지고 있다.
이미지들
검은색 삼각형 사이에 가장자리가 없는 키랄 쌍으로 그려짐:
대칭
더 높은 대칭 색상은 s{8,4}로서 [8,4] 대칭으로 구성할 수 있다. 이 구조에는 8각형의 색상이 하나만 있다.
관련 다면체 및 타일링
균일한 8각형 틸팅 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
대칭: [8,8], (*882) | |||||||||||
= = | = = | = = | = = | = = | = = | = = | |||||
{8,8} | t{8,8} | r{8,8} | 2t{8,8}=t{8,8} | 2r{8,8}={8,8} | rr{8,8} | tr{8,8} | |||||
균일 듀얼 | |||||||||||
V88 | V8.16.16 | V8.8.8.8 | V8.16.16 | V88 | V4.8.4.8 | V4.16.16 | |||||
교대 | |||||||||||
[1+,8,8] (*884) | [8+,8] (8*4) | [8,1+,8] (*4242) | [8,8+] (8*4) | [8,8,1+] (*884) | [(8,8,2+)] (2*44) | [8,8]+ (882) | |||||
= | = | = | = = | = = | |||||||
h{8,8} | s{8,8} | hr{8,8} | s{8,8} | h{8,8} | 흐르{8,8} | sr{8,8} | |||||
교류 듀얼 | |||||||||||
V(4.8)8 | V3.4.3.8.3.8 | V(4.4)4 | V3.4.3.8.3.8 | V(4.8)8 | V46 | V3.3.8.3.8 |
균일한 팔각/제곱 기울기 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
[8,4], (*842) ([8,8](*882), [(4,4,4)](*444), [1994](*4222) 인덱스 2 하위대칭) (그리고 [([4,4,4,4])] (*4242) 지수 4 하위대칭) | |||||||||||
= = = | = | = = = | = | = = | = | ||||||
{8,4} | t{8,4} | r{8,4} | 2t{8,4}=t{4,8} | 2r{8,4}={4,8} | rr{8,4} | tr{8,4} | |||||
균일 듀얼 | |||||||||||
V84 | V4.16.16 | V(4.8)2 | V8.8.8 | V48 | V4.4.4.8 | V4.8.16 | |||||
교대 | |||||||||||
[1+,8,4] (*444) | [8+,4] (8*2) | [8,1+,4] (*4222) | [8,4+] (4*4) | [8,4,1+] (*882) | [(8,4,2+)] (2*42) | [8,4]+ (842) | |||||
= | = | = | = | = | = | ||||||
h{8,4} | s{8,4} | hr{8,4} | s{4,8} | h{4,8} | 흐르{8,4} | sr{8,4} | |||||
교류 듀얼 | |||||||||||
V(4.4)4 | V3.(3.8)2 | V(4.4.4)2 | V(3.4)3 | V88 | V4.44 | V3.3.4.3.8 |
4n2 스너브 틸팅의 대칭 돌연변이: 3.3.n.3.n.n.n. | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
대칭 4n2 | 구면 | 유클리드 주 | 콤팩트 쌍곡선 | 파라콤팩트 | |||||||
222 | 322 | 442 | 552 | 662 | 772 | 882 | ∞∞2 | ||||
스너브 수치 | |||||||||||
구성. | 3.3.2.3.2 | 3.3.3.3.3 | 3.3.4.3.4 | 3.3.5.3.5 | 3.3.6.3.6 | 3.3.7.3.7 | 3.3.8.3.8 | 3.3.∞.3.∞ | |||
자이로 수치 | |||||||||||
구성. | V3.3.2.3.2 | V3.3.3.3.3 | V3.3.4.3.4 | V3.3.5.3.5 | V3.3.6.3.6 | V3.3.7.3.7 | V3.3.8.3.8 | V3.3.1983.3.1987 |
참조
- 존 H. 콘웨이, 하이디 버기엘, 차임 굿맨-스트라스, 2008년 사물의 대칭, ISBN978-1-56881-220-5 (19장, 쌍곡선 아르키메데스 테셀레이션)
- "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.
참고 항목
위키미디어 커먼즈에는 Uniform tiling 3-3-8-3-8과 관련된 미디어가 있다. |