테트라헥사각형 타일링

Tetrahexagonal tiling
테트라헥사각형 타일링
Tetrahexagonal tiling
쌍곡면푸앵카레 디스크 모델
유형 쌍곡선 균일 타일링
꼭지점 구성 (4.6)2
슐레플리 기호 r{6,4} 또는{ 6
rr{6,6}
r(4,4,3)
t0,1,2,3 (1998,3,196,3)
와이토프 기호 2 6 4
콕시터 다이어그램 CDel node.pngCDel 6.pngCDel 노드 1.pngCDel 4.pngCDel node.png 또는
CDel 노드 1.pngCDel 6.pngCDel node.pngCDel 6.pngCDel 노드 1.png 또는
CDel branch 11.pngCDel split2-44.pngCDel node.png
CDel nodes 11.pngCDel 3a3b-cross.pngCDel nodes 11.png
대칭군 [6,4], (*642)
[6,6], (*662)
[(4,4,3)], (*443)
[(∞,3,∞,3)], (*3232)
이중 주문-6-4 quasiregular rhombic tiling
특성. 정점 변환 가장자리-변환성

기하학에서 4각형 타일링쌍곡면의 균일한 타일링이다. 그것은 Schléfli 기호 r{6,4}를 가지고 있다.

시공

이 타일링의 균일한 구조를 위한 것이 있으며, 그 중 3개는 [6,4] 칼리도스코프에서 거울을 제거하여 시공된 것이다. 마지막 미러인 [6,4,1]을+ 제거하면 [6,6], (*662). 첫 번째 미러[1+,6,4]를 제거하면 [(4,4,3)], (*443)가 나타난다. 두 거울을+ 모두 [1,6+,4,1]로 제거하면 [(3,6,3,3,3,3](*322)가 남는다.

4.6.4.6의 4개의 균일한 구조
유니폼
컬러링
H2 tiling 246-2.png H2 tiling 266-5.png H2 tiling 344-5.png 3222-uniform tiling-verf4646.png
기본
도메인
642 symmetry 000.png 642 symmetry 00a.png 642 symmetry a00.png 642 symmetry a0b.png
슐레플리 r{6,4} r{4,6}12 r{6,4}½ r{6,4}½4
대칭 [6,4]
(*642)
CDel node c3.pngCDel 6.pngCDel node c1.pngCDel 4.pngCDel node c2.png
[6,6] = [6,4,1+]
(*662)
CDel node c3.pngCDel split1-66.pngCDel nodeab c1.png
[(4,4,3)] = [1+,6,4]
(*443)
CDel branch c1.pngCDel split2-44.pngCDel node c2.png
[(∞,3,∞,3)] = [1+,6,4,1+]
(*3232)
CDel 레이블 infinfin.pngCDel 분기 c1.pngCDel 3ab.pngCDel 분기 c1.pngCDel 레이블 infinfin.png 또는
기호 r{6,4} rr{6,6} r(4,3,4) t0,1,2,3 (1998,3,196,3)
콕시터
도표를 만들다
CDel node.pngCDel 6.pngCDel node 1.pngCDel 4.pngCDel node.png CDel node.pngCDel 6.pngCDel node 1.pngCDel 4.pngCDel node h0.png = CDel node.pngCDel split1-66.pngCDel nodes 11.png CDel node h0.pngCDel 6.pngCDel node 1.pngCDel 4.pngCDel node.png = CDel branch 11.pngCDel split2-44.pngCDel node.png CDel node h0.pngCDel 6.pngCDel node 1.pngCDel 4.pngCDel node h0.png =
CDel labelinfin.pngCDel branch 11.pngCDel 3ab.pngCDel branch 11.pngCDel labelinfin.png 또는

대칭

얼굴 구성이 V4.6.4.6인 롬브릭 사트라헥스각형 타일링이라 불리는 이중 타일링은 여기에 서로 다른 두 개의 중심 뷰로 표시된 4각형 칼리디스코프(*322)의 기본 영역을 나타낸다. 각 rhombi의 중앙에 2배 회전점을 추가하는 것은 a(2*32) 궤도선이다.

Hyperbolic domains 3232.pngOrd64 qreg rhombic til.pngH2chess 246a.pngOrder-6 hexagonal tiling and dual.png

관련 다면체 및 타일링

*n42 Quasiregular 틸팅의 대칭 변이: (4.n)2
대칭
*4n2
[n,4]
구면 유클리드 주 콤팩트 쌍곡선 파라콤팩트 비컴팩트
*342
[3,4]
*442
[4,4]
*542
[5,4]
*642
[6,4]
*742
[7,4]
*842
[8,4]...
*∞42
[∞,4]

[ni,4]
수치 Uniform tiling 432-t1.png Uniform tiling 44-t1.png H2-5-4-rectified.svg H2 tiling 246-2.png H2 tiling 247-2.png H2 tiling 248-2.png H2 tiling 24i-2.png
구성. (4.3)2 (4.4)2 (4.5)2 (4.6)2 (4.7)2 (4.8)2 (4.∞)2 (4.ni)2
quasiregular 기울기의 대칭 변이: 6.n.6.n
대칭
*6n2
[n,6]
유클리드 주 콤팩트 쌍곡선 파라콤팩트 비컴팩트
*632
[3,6]
*642
[4,6]
*652
[5,6]
*662
[6,6]
*762
[7,6]
*862
[8,6]...
*∞62
[∞,6]

[iπ/λ,6]
퀘이레굴라속
수치
배열
Uniform tiling 63-t1.svg
6.3.6.3
H2 tiling 246-2.png
6.4.6.4
H2 tiling 256-2.png
6.5.6.5
H2 tiling 266-2.png
6.6.6.6
H2 tiling 267-2.png
6.7.6.7
H2 tiling 268-2.png
6.8.6.8
H2 tiling 26i-2.png
6.∞.6.∞

6.∞.6.∞
이중 수치
롬빅
수치
배열
Rhombic star tiling.png
V6.3.6.3
H2chess 246a.png
V6.4.6.4
Order-6-5 quasiregular rhombic tiling.png
V6.5.6.5
H2 tiling 246-4.png
V6.6.6.6

V6.7.6.7
H2chess 268a.png
V6.8.6.8
H2chess 26ia.png
V6.1986.6.1987
균일한 4차각 틸팅
대칭: [6,4], (*642)
([6,6](*662), [(4,3,3)](*443), [195,3,12](*3222) 인덱스 2 하위대칭)
(그리고 [(재), 3,4,3](*322) 지수 4 하위대칭)
CDel node 1.pngCDel 6.pngCDel node.pngCDel 4.pngCDel node.png
= CDel node 1.pngCDel split1-66.pngCDel nodes.png
CDel 2.png
= CDel branch 11.pngCDel 2a2b-cross.pngCDel nodes.png
= CDel branch 11.pngCDel 3a3b-cross.pngCDel branch 11.png
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 4.pngCDel node.png
= CDel node 1.pngCDel split1-66.pngCDel nodes 11.png
CDel node.pngCDel 6.pngCDel node 1.pngCDel 4.pngCDel node.png
= CDel node.pngCDel split1-66.pngCDel nodes 11.png
= CDel branch 11.pngCDel split2-44.pngCDel node.png
CDel 2.png
= CDel nodes 11.pngCDel 3a3b-cross.pngCDel nodes 11.png
CDel node.pngCDel 6.pngCDel node 1.pngCDel 4.pngCDel node 1.png
CDel 2.png
= CDel branch 11.pngCDel split2-44.pngCDel node 1.png
CDel node.pngCDel 6.pngCDel node.pngCDel 4.pngCDel node 1.png
CDel 2.png
= CDel branch.pngCDel split2-44.pngCDel node 1.png
= CDel branch.pngCDel 2a2b-cross.pngCDel nodes 11.png
= CDel branchu 11.pngCDel 2.pngCDel branchu 11.pngCDel 2.pngCDel branchu 11.png
CDel node 1.pngCDel 6.pngCDel node.pngCDel 4.pngCDel node 1.png
CDel 2.png
CDel 2.png
= CDel branch 11.pngCDel 2a2b-cross.pngCDel nodes 11.png
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 4.pngCDel node 1.png
H2 tiling 246-1.png H2 tiling 246-3.png H2 tiling 246-2.png H2 tiling 246-6.png H2 tiling 246-4.png H2 tiling 246-5.png H2 tiling 246-7.png
{6,4} t{6,4} r{6,4} t{4,6} {4,6} rr{6,4} tr{6,4}
균일 듀얼
CDel node f1.pngCDel 6.pngCDel node.pngCDel 4.pngCDel node.png CDel node f1.pngCDel 6.pngCDel node f1.pngCDel 4.pngCDel node.png CDel node.pngCDel 6.pngCDel node f1.pngCDel 4.pngCDel node.png CDel node.pngCDel 6.pngCDel node f1.pngCDel 4.pngCDel node f1.png CDel node.pngCDel 6.pngCDel node.pngCDel 4.pngCDel node f1.png CDel node f1.pngCDel 6.pngCDel node.pngCDel 4.pngCDel node f1.png CDel node f1.pngCDel 6.pngCDel node f1.pngCDel 4.pngCDel node f1.png
H2chess 246b.png H2chess 246f.png H2chess 246a.png H2chess 246e.png H2chess 246c.png H2chess 246d.png H2checkers 246.png
V64 V4.12.12 V(4.6)2 V6.8.8 V46 V4.4.4.6 V4.8.12
교대
[1+,6,4]
(*443)
[6+,4]
(6*2)
[6,1+,4]
(*3222)
[6,4+]
(4*3)
[6,4,1+]
(*662)
[(6,4,2+)]
(2*32)
[6,4]+
(642)
CDel node h1.pngCDel 6.pngCDel node.pngCDel 4.pngCDel node.png
= CDel branch 10ru.pngCDel split2-44.pngCDel node.png
CDel node h.pngCDel 6.pngCDel node h.pngCDel 4.pngCDel node.png
= CDel node h.pngCDel split1-66.pngCDel branch hh.pngCDel label2.png
CDel node.pngCDel 6.pngCDel node h1.pngCDel 4.pngCDel node.png
= CDel branch 10.pngCDel 2a2b-cross.pngCDel nodes 10.png
CDel node.pngCDel 6.pngCDel node h.pngCDel 4.pngCDel node h.png
= CDel branch hh.pngCDel split2-44.pngCDel node h.png
CDel node.pngCDel 6.pngCDel node.pngCDel 4.pngCDel node h1.png
= CDel node.pngCDel split1-66.pngCDel nodes 10lu.png
CDel node h.pngCDel 6.pngCDel node.pngCDel 4.pngCDel node h.png
= CDel branch hh.pngCDel 2xa2xb-cross.pngCDel branch hh.pngCDel label2.png
CDel node h.pngCDel 6.pngCDel node h.pngCDel 4.pngCDel node h.png
Uniform tiling 443-t0.png Uniform tiling 64-h02.png Uniform tiling 64-h1.png Uniform tiling 443-snub2.png Uniform tiling 66-t0.png Uniform tiling 3.4.4.4.4.png Uniform tiling 64-snub.png
h{6,4} s{6,4} hr{6,4} s{4,6} h{4,6} 흐르{6,4} sr{6,4}
균일한 육각형 틸팅
대칭: [6,6], (*662)
CDel node 1.pngCDel 6.pngCDel node.pngCDel 6.pngCDel node.png = CDel nodes 10ru.pngCDel split2-66.pngCDel node.png
= CDel node h1.pngCDel 4.pngCDel node.pngCDel 6.pngCDel node.png
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 6.pngCDel node.png = CDel nodes 10ru.pngCDel split2-66.pngCDel node 1.png
= CDel node h1.pngCDel 4.pngCDel node.pngCDel 6.pngCDel node 1.png
CDel node.pngCDel 6.pngCDel node 1.pngCDel 6.pngCDel node.png = CDel nodes.pngCDel split2-66.pngCDel node 1.png
= CDel node h0.pngCDel 4.pngCDel node.pngCDel 6.pngCDel node 1.png
CDel node.pngCDel 6.pngCDel node 1.pngCDel 6.pngCDel node 1.png = CDel nodes 01rd.pngCDel split2-66.pngCDel node 1.png
= CDel node h1.pngCDel 4.pngCDel node.pngCDel 6.pngCDel node 1.png
CDel node.pngCDel 6.pngCDel node.pngCDel 6.pngCDel node 1.png = CDel nodes 01rd.pngCDel split2-66.pngCDel node.png
= CDel node h1.pngCDel 4.pngCDel node.pngCDel 6.pngCDel node.png
CDel node 1.pngCDel 6.pngCDel node.pngCDel 6.pngCDel node 1.png = CDel nodes 11.pngCDel split2-66.pngCDel node.png
= CDel node h0.pngCDel 4.pngCDel node 1.pngCDel 6.pngCDel node.png
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 6.pngCDel node 1.png =CDel nodes 11.pngCDel split2-66.pngCDel node 1.png
= CDel node h0.pngCDel 4.pngCDel node 1.pngCDel 6.pngCDel node 1.png
H2 tiling 266-1.png H2 tiling 266-3.png H2 tiling 266-2.png H2 tiling 266-6.png H2 tiling 266-4.png H2 tiling 266-5.png H2 tiling 266-7.png
{6,6}
= h{4,6}
t{6,6}
= h2{4,6}
r{6,6}
{6,4}
t{6,6}
= h2{4,6}
{6,6}
= h{4,6}
rr{6,6}
r{6,4}
tr{6,6}
t{6,4}
균일 듀얼
CDel node f1.pngCDel 6.pngCDel node.pngCDel 6.pngCDel node.png CDel node f1.pngCDel 6.pngCDel node f1.pngCDel 6.pngCDel node.png CDel node.pngCDel 6.pngCDel node f1.pngCDel 6.pngCDel node.png CDel node.pngCDel 6.pngCDel node f1.pngCDel 6.pngCDel node f1.png CDel node.pngCDel 6.pngCDel node.pngCDel 6.pngCDel node f1.png CDel node f1.pngCDel 6.pngCDel node.pngCDel 6.pngCDel node f1.png CDel node f1.pngCDel 6.pngCDel node f1.pngCDel 6.pngCDel node f1.png
H2chess 266b.png H2chess 266f.png H2chess 266a.png H2chess 266e.png H2chess 266c.png H2chess 266d.png H2checkers 266.png
V66 V6.12.12 V6.6.6.6 V6.12.12 V66 V4.6.4.6 V4.12.12
교대
[1+,6,6]
(*663)
[6+,6]
(6*3)
[6,1+,6]
(*3232)
[6,6+]
(6*3)
[6,6,1+]
(*663)
[(6,6,2+)]
(2*33)
[6,6]+
(662)
CDel node h1.pngCDel 6.pngCDel node.pngCDel 6.pngCDel node.png = CDel branch 10ru.pngCDel split2-66.pngCDel node.png CDel node h.pngCDel 6.pngCDel node h.pngCDel 6.pngCDel node.png CDel node.pngCDel 6.pngCDel node h1.pngCDel 6.pngCDel node.png = CDel nodes 11.pngCDel 3a3b-cross.pngCDel nodes.png CDel node.pngCDel 6.pngCDel node h.pngCDel 6.pngCDel node h.png CDel node.pngCDel 6.pngCDel node.pngCDel 6.pngCDel node h1.png = CDel node.pngCDel split1-66.pngCDel branch 01ld.png CDel node h.pngCDel 6.pngCDel node.pngCDel 6.pngCDel node h.png CDel node h.pngCDel 6.pngCDel node h.pngCDel 6.pngCDel node h.png
CDel node h1.pngCDel 6.pngCDel node.pngCDel 6.pngCDel node.png CDel node h.pngCDel 6.pngCDel node h.pngCDel 6.pngCDel node.png CDel node.pngCDel 6.pngCDel node h1.pngCDel 6.pngCDel node.png CDel node.pngCDel 6.pngCDel node h.pngCDel 6.pngCDel node h.png CDel node.pngCDel 6.pngCDel node.pngCDel 6.pngCDel node h1.png CDel node h.pngCDel 6.pngCDel node.pngCDel 6.pngCDel node h.png CDel node h.pngCDel 6.pngCDel node h.pngCDel 6.pngCDel node h.png
Uniform tiling 66-h0.png Uniform tiling verf 34343434.png Uniform tiling 66-h0.png Uniform tiling 64-h1.png Uniform tiling 66-snub.png
h{6,6} s{6,6} hr{6,6} s{6,6} h{6,6} 흐르{6,6} sr{6,6}
균일(4,4,3) 틸팅
대칭: [(4,4,3)] (*443) [(4,4,3)]+
(443)
[(4,4,3+)]
(3*22)
[(4,1+,4,3)]
(*3232)
CDel branch 01rd.pngCDel split2-44.pngCDel node.png CDel branch 01rd.pngCDel split2-44.pngCDel node 1.png CDel branch.pngCDel split2-44.pngCDel node 1.png CDel branch 10ru.pngCDel split2-44.pngCDel node 1.png CDel branch 10ru.pngCDel split2-44.pngCDel node.png CDel branch 11.pngCDel split2-44.pngCDel node.png CDel branch 11.pngCDel split2-44.pngCDel node 1.png CDel branch hh.pngCDel split2-44.pngCDel node h.png CDel branch hh.pngCDel split2-44.pngCDel node.png CDel branch.pngCDel split2-44.pngCDel node h.png CDel branch 10ru.pngCDel split2-44.pngCDel node h.png
CDel node h.pngCDel 6.pngCDel node.pngCDel 4.pngCDel node.png CDel node h.pngCDel 6.pngCDel node.pngCDel 4.pngCDel node 1.png CDel node h0.pngCDel 6.pngCDel node.pngCDel 4.pngCDel node 1.png CDel node h.pngCDel 6.pngCDel node.pngCDel 4.pngCDel node 1.png CDel node h.pngCDel 6.pngCDel node.pngCDel 4.pngCDel node.png CDel node h0.pngCDel 6.pngCDel node 1.pngCDel 4.pngCDel node.png CDel node h0.pngCDel 6.pngCDel node 1.pngCDel 4.pngCDel node 1.png CDel node h0.pngCDel 6.pngCDel node h.pngCDel 4.pngCDel node h.png CDel node h0.pngCDel 6.pngCDel node h.pngCDel 4.pngCDel node.png CDel node h0.pngCDel 6.pngCDel node.pngCDel 4.pngCDel node h.png CDel node h1.pngCDel 6.pngCDel node.pngCDel 4.pngCDel node h1.png
Uniform tiling 443-t0.png Uniform tiling 443-t01.png Uniform tiling 443-t1.png Uniform tiling 443-t12.png Uniform tiling 443-t2.png Uniform tiling 443-t02.png Uniform tiling 443-t012.png Uniform tiling 443-snub1.png Uniform tiling 64-h1.png Uniform tiling 66-t2.png Uniform tiling verf 34664.png
h{6,4}
t0(4,4,3)
h2{6,4}
t0,1(4,4,3)
{4,6}1/2
t1(4,4,3)
h2{6,4}
t1,2(4,4,3)
h{6,4}
t2(4,4,3)
r{6,4}1/2
t0,2(4,4,3)
t{4,6}1/2
t0,1,2(4,4,3)
s{4,6}1/2
s(4,4,3)
hr{4,6}1/2
hr (4,3,4)
h{4,6}1/2
h(4,3,4)
q{4,6}
h1(4,3,4)
균일 듀얼
Uniform tiling 66-t1.png Ord64 qreg rhombic til.png Order4 hexakis hexagonal til.png Uniform tiling 66-t0.png
V(3.4)4 V3.8.4.8 V(4.4)3 V3.8.4.8 V(3.4)4 V4.6.4.6 V6.8.8 V3.3.3.4.3.4 V(4.4.3)2 V66 V4.3.4.6.6
*3232 대칭에서 유사한 H2 기울기
콕시터
도표
CDel node h0.pngCDel 6.pngCDel node.pngCDel 4.pngCDel node h1.png CDel node h1.pngCDel 6.pngCDel node.pngCDel 4.pngCDel node h0.png CDel node h1.pngCDel 6.pngCDel node.pngCDel 4.pngCDel node h1.png CDel node h0.pngCDel 6.pngCDel node 1.pngCDel 4.pngCDel node h0.png
CDel labelh.pngCDel node.pngCDel split1-66.pngCDel nodes 10lu.png CDel branch.pngCDel split2-44.pngCDel node h1.png CDel node h1.pngCDel split1-66.pngCDel nodes.png CDel branch 10ru.pngCDel split2-44.pngCDel node.pngCDel labelh.png CDel node h1.pngCDel split1-66.pngCDel nodes 10lu.png CDel branch 10ru.pngCDel split2-44.pngCDel node h1.png CDel labelh.pngCDel node.pngCDel split1-66.pngCDel nodes 11.png CDel branch 11.pngCDel split2-44.pngCDel node.pngCDel labelh.png
CDel branch 11.pngCDel 2a2b-cross.pngCDel branch.png CDel branch 10.pngCDel 2a2b-cross.pngCDel branch 10.png CDel branch 10.pngCDel 2a2b-cross.pngCDel branch 11.png CDel branch 11.pngCDel 2a2b-cross.pngCDel branch 11.png
꼭지점
형상을 나타내다
66 (3.4.3.4)2 3.4.6.6.4 6.4.6.4
이미지 Uniform tiling verf 666666.png Uniform tiling verf 34343434.png Uniform tiling verf 34664.png 3222-uniform tiling-verf4646.png
이중 Uniform tiling verf 666666b.png H2chess 246a.png

참고 항목

참조

  • 존 H. 콘웨이, 하이디 버기엘, 차임 굿맨-스트라스, 2008년 사물의 대칭, ISBN978-1-56881-220-5 (19장, 쌍곡선 아르키메데스 테셀레이션)
  • "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.

외부 링크