기하학에서 Coxeter 표기법(Coxeter 기호도 역시 Coxeter 기호)은 대칭군 분류 체계로서 Coxeter-Dynkin 도표의 구조를 나타내는 브라켓형 표기법으로 Coxeter 그룹의 근본적인 반사 사이의 각도를 기술하고 있으며, 특정 부분군을 나타내는 수식어를 사용한다. 이 표기법은 H. S. M. Coxeter의 이름을 따서 명명되었으며, 노먼 존슨에 의해 보다 포괄적으로 정의되었다.
순수한 반사로 정의되는 Coxeter 그룹의 경우, 대괄호 표기법과 Coxeter-Dynkin 도표 사이에 직접적인 일치성이 있다. 괄호 표기법의 숫자는 Coxeter 도표의 분기에 있는 거울 반사 순서를 나타낸다. 직교 거울 사이에 2초를 억제하면서 동일한 단순화를 사용한다.
Coxeter 표기법은 선형 다이어그램에 대해 행에 있는 가지 수를 나타내기 위해 지수를 사용하여 단순화된다. 따라서 A 그룹은n [3n−1]로 표시되며, 이는 n-1 주문-3 분기로 연결된 n개의 노드를 의미한다. 예제 A2 = [3,3] = [32] 또는 [31,1]은 도표 또는 를 나타낸다.
Coxeter는 처음에는 숫자의 수직 위치를 갖는 분기 도표를 나타냈으나, 나중에 [...,3p,q] 또는 [3p,q,r]과 같은 지수 표기법으로 약칭하여 [31,1,1] 또는 [31,1] = 또는 D로4 시작한다. An 계열에 맞는 특별한 경우로서 0에 대해 허용되는 콕시터(예: A3 = [3,3,3] = [34,0,04,0] = [33,1] = [3] = [32,2], like = = = .
주기 다이어그램에 의해 형성된 콕시터 그룹은 삼각형 그룹(pq r)에 대한 [(p,q,r)] =와 같이 괄호 안에 있는 괄호로 표현된다. 분기 순서가 같을 경우, [(3,3,3[4],3)] = [3]와 같이 괄호 안의 주기 길이에 따라 지수로 그룹화할 수 있다. Coxeter 다이어그램 또는 .를 나타내는 것은 [3,3,3)] 또는 [3,3[3]]로 나타낼 수 있다.
더 복잡한 루프 도표도 주의 깊게 표현할 수 있다. 파라콤팩트 콕시터 그룹은 콕시터 표기법[(3,3,3)]으로 나타낼 수 있으며, 두 개의 인접한 [(3,3,3) 루프를 보여주는 내포/과대칭 괄호를 가지고 있으며, 콕시터 다이어그램의 롬빅 대칭을 나타내는 [3[ ]×[ ]]으로 보다 압축적으로 표현된다. 파라콤팩트 전체 그래프 다이어그램 또는 는 일반 사면체 코엑스터 다이어그램의 대칭으로 위첨자 [3,3]와 함께 [3[3,3]]로 표시된다.
Coxeter 다이어그램은 보통 순서-2 가지를 사용하지 않고 그대로 두지만, 괄호 표기법에는 서브그래프를 연결하기 위한 명시적 2가 포함되어 있다. 따라서 Coxeter 다이어그램 = A2×A2 = 2A는2 [3]×[3] = [3]2 = [3,2,3]로 나타낼 수 있다. 때때로 명시적 2-브랜치는 2개의 라벨 또는 간격이 있는 선과 함께 포함되거나 [3,2,3]과 동일한 표시로 포함될 수 있다.
어핀 및 쌍곡선 그룹의 경우, 첨자는 각 그룹이 유한 그룹의 다이어그램에 노드를 추가하여 얻었기 때문에 각각의 경우에서 노드 수보다 1개 적다.
부분군
Coxeter의 표기법은 대괄호 밖에 상위첨자 연산자를 추가하여 회전/변환 대칭을 나타내며, 이 연산자는 그룹 [X]+의 순서를 반으로 자르고, 따라서 지수 2 하위그룹을 나타낸다. 이 연산자는 반사를 회전(또는 번역)으로 대체하여 짝수 연산자를 적용해야 함을 의미한다. Coxeter 그룹에 적용했을 때, 이것을 다이렉트 서브그룹이라고 부르는데, 남아 있는 것은 반사 대칭이 없는 다이렉트 이소메트리일 뿐이다.
연산자는 또한 [X,Y+] 또는 [X,(Y,Z)]+와 같이 괄호 안에 적용될 수 있으며 반사 발전기와 비반사 발전기를 모두 포함할 수 있는 "semidirect" 하위그룹을 생성할 수 있다. 반간접적인 하위 그룹은 그것과 인접한 주문 분기가 있는 Coxeter 그룹 하위 그룹에만 적용할 수 있다. Coxeter 그룹 내부의 괄호들에 의한 요소는 인접한 순서의 가지를 반순으로 나누는 효과를 가지면서 위첨자 연산자에게 줄 수 있으므로, 일반적으로 짝수 숫자로만 적용된다. 예를 들면 [4,3+]과 [4,(3,3)]()+이다.
인접한 홀수 분기를 적용하면 지수 2의 하위 그룹을 생성하지 않고, 대신 [5,1+] = [5/2]와 같이 겹치는 기본 도메인을 생성하여 펜타그램, {5/2}, [5,3+]와 같은 이중으로 포장된 폴리곤을 슈바르츠 삼각형 [5/2,3] 밀도 2와 관련시킬 수 있다.
순위 2 그룹의 예
그룹
주문
제너레이터
부분군
주문
제너레이터
메모들
[p]
2p
{0,1}
[p]+
p
{01}
직접 부분군
[2p+] = [2p]+
2p
{01}
[2p+]+ = [2p]+2 = [p]+
p
{0101}
[2p]
4p
{0,1}
[1+,2p] = [p]
= =
2p
{101,1}
부분군 반
[2p,1+] = [p]
= =
{0,010}
[1+,2p,1+] = [2p]+2 = [p]+
= =
p
{0101}
쿼터 그룹
주변 요소가 없는 그룹은 균일한 폴리토프의 링 노드인 Coxeter-Dynkin 도표에서 볼 수 있으며 벌집합은 요소 주위의 구멍 노드, 대체 노드가 제거된 빈 원과 관련이 있다. 그래서 스너브 큐브는 대칭 [4,3]()+을 가지며 스너브 4면체는 대칭 [4,3+]()을 가지며, 데미큐브, h{4,3} = {3,3}( 또는 = )은 대칭 [1+,4,3] = [3,3]( 또는 = )이다.
참고: Pyritohedral 대칭은 명확성을 위해 그래프를 공백으로 분리하고, Coxeter 그룹에서 {0,1,2} 발전기를 사용하여 Pyritohedral 생성기 {0,12}, 반사 및 3배 회전으로 기록할 수 있다. 그리고 치랄 사면 대칭은 또는 , [1+,4,3+] = [3,3]+로 표기할 수 있으며 발전기는 {12,0120}이다.
존슨은 거울을 제거하는 자리 표시자+ 1 노드로 작업하도록 연산자를 확장하여 기본 도메인의 크기를 두 배로 늘리고 그룹 순서를 반으로 줄인다.[1] 일반적으로 이 작업은 짝수 분기로 경계된 개별 미러에만 적용된다. 1은 거울을 나타내므로 [2p]을 도표나 와 같이 [2p,1], [1,2p] 또는 [1,2p,1]로 볼 수 있다. 미러 제거의 효과는 Coxeter 다이어그램: = , 또는 괄호 표기법:[1+,2p, 1] = [1,p,1] = [p]에서 볼 수 있는 연결 노드를 복제하는 것이다.
이러한 거울은 각각 h[2p] = [1+,2p,1] = [1,2p,1+] = [p], 반사 부분군 지수 2가 되도록 제거할 수 있다. 이는 노드 위에 기호를 추가하여 Coxeter 다이어그램에 표시할 수 있다: = = .
두 미러가 모두 제거되면 분기 순서가 순서의 절반인 회전 지점이 되는 1/4 부분군이 생성된다.
q[2p] = [1+,2p,1+] = [p],+ 지수 4. = = = = = = .
예를 들어 (p=2 포함): [4,1+] = [1+,4] = [2] = [ ]×[], 순서 4. [1+,4,1+] = [2],+ 순서 2.
반감과는 반대로 거울을 추가하는 두 배[2], 기본 영역을 이등분하고, 그룹 순서를 두 배로 하는 것이다.
[[p] = [2p]
사면 대칭은 팔면 그룹의 절반 그룹인 h[4,3] = [1+,4,3] = [1,4,3] = [3,3]과 같이 반감 연산이 상위 랭크 그룹에 적용된다. 미러 제거의 효과는 Coxeter 다이어그램에서 볼 수 있는 모든 연결 노드를 복제하는 것이다. = , h[2p,3] = [1+,2p,3] = [(p,3,3)]
노드가 인덱싱된 경우, 절반의 부분군에는 합성물로 새 미러를 표시할 수 있다. 과 마찬가지로 발전기 {0,1}에는 부분군 = , 생성기 {1,010}이(가) 있으며, 여기서 미러 0은 제거되고 미러 0에 반사된 미러 1의 복사본으로 대체된다. 또한 , 생성기 {0,1,2}을(를) 지정하면 절반 그룹 = , 생성기 {1,2,010}이(가) 있음.
거울을 추가하여 반감하는 동작도 역방향으로 적용한다: [[3,3] = [4,3] = [4,3], 또는 더 일반적으로 [[(q,q,p)] = [2p,q]
존슨은 또한 운영자와 유사하게 작용하지만 회전 대칭은 제거하는 "[3]라디칼" 부분군을 위해 별표나 별* 연산자를 추가했다. 급진적인 부분군의 지수는 제거된 원소의 순서다. 예를 들면 [4,3*] ≅ [2,2]이다. 제거된 [3] 부분군은 순서 6이므로 [2,2]는 [4,3]의 지수 6 부분군이다.
급진적인 부분군은 확장된 대칭 연산에 대한 역연산을 나타낸다. 예를 들어 [4,3*] ≅ [2,2], 역[2,2] as [4,3]으로 확장할 수 있다. 부분군은 Coxeter 다이어그램 또는 ≅으로 표현할 수 있다. 제거된 노드(미러)는 인접한 미러 가상 미러를 실제 미러로 만든다.
If [4,3] has generators {0,1,2}, [4,3+], index 2, has generators {0,12}; [1+,4,3] ≅ [3,3], index 2 has generators {010,1,2}; while radical subgroup [4,3*] ≅ [2,2], index 6, has generators {01210, 2, (012)3}; and finally [1+,4,3*], index 12 has generators {0(12)20, (012)201}.
삼온 부분군
순위 2 예제, 3가지 색상의 미러 라인이 있는 [6] 삼온 부분군
팔면 대칭의 예: [4,3⅄] = [2,4]
육각 대칭[6,3]에 대한 트리오닉 부분군의 예는 더 큰 [6,3] 대칭에 매핑된다.
3위
팔각 대칭[8,3]의 삼온 부분군은 더 큰 [4,8] 대칭에 매핑된다.
4위
삼온 부분군은 지수 3 부분군이다. 존슨씨는 연산자 ⅄, 지수 3으로 트리오닉 하위그룹을 정의하고 있다. 순위 2 Coxeter 그룹의 경우 [3], 트리오닉 하위 그룹의 경우 [3⅄]은 [ ], 단일 미러다. 그리고 [3p]의 경우, 삼온 부분군은 [3p]⅄ ≅ [p]이다. 생성자가 {0,1}인 경우 에는 3개의 트리온 하위 그룹이 있다. ⅄ 기호를 제거할 미러 발생기 옆에 놓거나, 두 가지 모두에 대해 분기([3p,1⅄] = , ,, [3p⅄] = {0,101}, {0101,1} 또는 {101,010})로 구분할 수 있다.
3위 Coxeter 그룹 [p,3]의 경우, [p,3⅄] or [p/2,p] 또는 =. 예를 들어 유한 그룹 [4,3⅄] ≅ [2,4], 유클리드 그룹 [6,3⅄] ≅ [3,6], 쌍곡 그룹 [8,8⅄]이 있다.
홀수 순서 인접 분기인 p는 그룹 순서를 낮추지 않고 중복되는 기본 도메인을 만든다. 그룹 순서는 그대로인 반면 밀도는 높아진다. 예를 들어, 정규 다면체의 고면체 대칭인 [5,3]은 2개의 일반 다면체의 대칭인 [5/2,5]가 된다. 또한 쌍곡선 기울기 {p,3} 및 별 쌍곡선 기울기 {p/2,p}과(와) 관련이 있다.
순위 4, [q,2p,3⅄] = [2p,(p,q,q)], = .
예를 들어, [3,4,3⅄]의 [3,3,3] 또는 [3,3]의 발전기 {0,1,3,3] 생성기 {0,1,2,32123}이(가) 있는 [3,4,3]의 생성기 {0,1,2,3}을(를) 예로 들 수 있다. 쌍곡선 그룹의 경우 [3,6,3⅄] = [6,3[3]], [4,4⅄,3] = [4,4,4].
Johnson은 [3,3]의 두 개의 특정 삼온 하위그룹을[4] 식별했고, 먼저 지수 3 하위그룹 [3,3]⅄ ≅ [2+,4], [3,3] ( = = ) 생성기가 {0,1,2}인 것을 확인했다. 또한 발전기 {02,1}을(를) 상기시키기 위해 [(3,3⅄,2)]()으로 쓸 수 있다. 이 대칭 감소는 정규 4면체와 4각형 디스페노이드 사이의 관계로서, 두 개의 반대쪽 가장자리에 수직인 4면체의 스트레칭을 나타낸다.
둘째로, 그는 관련 지수 6 하위그룹[3,3] 또는 [(3,3,Δ2⅄)]+ (), [3,3]+ ≅[2,2]+의 지수 3을 확인하고, [3,3]의 발전기 {02,1021}, 그리고 그 발전기 {01,1,2}을(를) 식별한다.
또한 이러한 부분군은 인접한 분기가 모두 짝수인 [3,3] 부분군이 있는 더 큰 Coxeter 그룹 내에서 적용된다.
[3,3,4]의 삼차 부분군 관계
For example, [(3,3)+,4], [(3,3)⅄,4], and [(3,3)Δ,4] are subgroups of [3,3,4], index 2, 3 and 6 respectively. The generators of [(3,3)⅄,4] ≅ [[4,2,4]] ≅ [8,2+,8], order 128, are {02,1,3} from [3,3,4] generators {0,1,2,3}. And [(3,3)Δ,4] ≅ [[4,2+,4]], order 64, has generators {02,1021,3}. As well, [3⅄,4,3⅄] ≅ [(3,3)⅄,4].
Also related [31,1,1] = [3,3,4,1+] has trionic subgroups: [31,1,1]⅄ = [(3,3)⅄,4,1+], order 64, and 1=[31,1,1]Δ = [(3,3)Δ,4,1+] ≅ [[4,2+,4]]+, order 32.
Central inversion
A 2D central inversion is a 180 degree rotation, [2]+
A central inversion, order 2, is operationally differently by dimension. The group [ ]n = [2n−1] represents n orthogonal mirrors in n-dimensional space, or an n-flat subspace of a higher dimensional space. The mirrors of the group [2n−1] are numbered . The order of the mirrors doesn't matter in the case of an inversion. The matrix of a central inversion is , the Identity matrix with negative one on the diagonal.
From that basis, the central inversion has a generator as the product of all the orthogonal mirrors. In Coxeter notation this inversion group is expressed by adding an alternation + to each 2 branch. The alternation symmetry is marked on Coxeter diagram nodes as open nodes.
A Coxeter-Dynkin diagram can be marked up with explicit 2 branches defining a linear sequence of mirrors, open-nodes, and shared double-open nodes to show the chaining of the reflection generators.
For example, [2+,2] and [2,2+] are subgroups index 2 of [2,2], , and are represented as (or ) and (or ) with generators {01,2} and {0,12} respectively. Their common subgroup index 4 is [2+,2+], and is represented by (or ), with the double-open marking a shared node in the two alternations, and a single rotoreflection generator {012}.
Rotations and rotary reflections are constructed by a single single-generator product of all the reflections of a prismatic group, [2p]×[2q]×... where gcd(p,q,...)=1, they are isomorphic to the abstract cyclic group Zn, of order n=2pq.
The 4-dimensional double rotations, [2p+,2+,2q+] (with gcd(p,q)=1), which include a central group, and are expressed by Conway as ±[Cp×Cq],[5] order 2pq. From Coxeter diagram , generators {0,1,2,3}, requires two generator for [2p+,2+,2q+], as {0123,0132}. Half groups, [2p+,2+,2q+]+, or cyclic graph, [(2p+,2+,2q+,2+)], expressed by Conway is [Cp×Cq], order pq, with one generator, like {0123}.
If there is a common factor f, the double rotation can be written as 1⁄f[2pf+,2+,2qf+] (with gcd(p,q)=1), generators {0123,0132}, order 2pqf. For example, p=q=1, f=2, 1⁄2[4+,2+,4+] is order 4. And 1⁄f[2pf+,2+,2qf+]+, generator {0123}, is order pqf. For example, 1⁄2[4+,2+,4+]+ is order 2, a central inversion.
In general a n-rotation group, [2p1+,2,2p2+,2,...,pn+] may require up to n generators if gcd(p1,..,pn)>1, as a product of all mirrors, and then swapping sequential pairs. The half group, [2p1+,2,2p2+,2,...,pn+]+ has generators squared. n-rotary reflections are similar.
Subgroups of [4,4], down to its commutator subgroup, index 8
Simple groups with only odd-order branch elements have only a single rotational/translational subgroup of order 2, which is also the commutator subgroup, examples [3,3]+, [3,5]+, [3,3,3]+, [3,3,5]+. For other Coxeter groups with even-order branches, the commutator subgroup has index 2c, where c is the number of disconnected subgraphs when all the even-order branches are removed.[6]
For example, [4,4] has three independent nodes in the Coxeter diagram when the 4s are removed, so its commutator subgroup is index 23, and can have different representations, all with three + operators: [4+,4+]+, [1+,4,1+,4,1+], [1+,4,4,1+]+, or [(4+,4+,2+)]. A general notation can be used with +c as a group exponent, like [4,4]+3.
Example subgroups
Rank 2 example subgroups
Dihedral symmetry groups with even-orders have a number of subgroups. This example shows two generator mirrors of [4] in red and green, and looks at all subgroups by halfing, rank-reduction, and their direct subgroups. The group [4], has two mirror generators 0, and 1. Each generate two virtual mirrors 101 and 010 by reflection across the other.
The [4,4] group has 15 small index subgroups. This table shows them all, with a yellow fundamental domain for pure reflective groups, and alternating white and blue domains which are paired up to make rotational domains. Cyan, red, and green mirror lines correspond to the same colored nodes in the Coxeter diagram. Subgroup generators can be expressed as products of the original 3 mirrors of the fundamental domain, {0,1,2}, corresponding to the 3 nodes of the Coxeter diagram, . A product of two intersecting reflection lines makes a rotation, like {012}, {12}, or {02}. Removing a mirror causes two copies of neighboring mirrors, across the removed mirror, like {010}, and {212}. Two rotations in series cut the rotation order in half, like {0101} or {(01)2}, {1212} or {(02)2}. A product of all three mirrors creates a transreflection, like {012} or {120}.
In the Euclidean plane, the , [3[3]] Coxeter group can be extended in two ways into the , [6,3] Coxeter group and relates uniform tilings as ringed diagrams.
Coxeter's notation includes double square bracket notation, [[X]] to express automorphic symmetry within a Coxeter diagram. Johnson added alternative doubling by angled-bracket <[X]>. Johnson also added a prefix symmetry modifier [Y[X]], where Y can either represent symmetry of the Coxeter diagram of [X], or symmetry of the fundamental domain of [X].
For example, in 3D these equivalent rectangle and rhombic geometry diagrams of : and , the first doubled with square brackets, [[3[4]]] or twice doubled as [2[3[4]]], with [2], order 4 higher symmetry. To differentiate the second, angled brackets are used for doubling, <[3[4]]> and twice doubled as <2[3[4]]>, also with a different [2], order 4 symmetry. Finally a full symmetry where all 4 nodes are equivalent can be represented by [4[3[4]]], with the order 8, [4] symmetry of the square. But by considering the tetragonal disphenoid fundamental domain the [4] extended symmetry of the square graph can be marked more explicitly as [(2+,4)[3[4]]] or [2+,4[3[4]]].
Further symmetry exists in the cyclic and branching , , and diagrams. has order 2n symmetry of a regular n-gon, {n}, and is represented by [n[3[n]]]. and are represented by [3[31,1,1]] = [3,4,3] and [3[32,2,2]] respectively while by [(3,3)[31,1,1,1]] = [3,3,4,3], with the diagram containing the order 24 symmetry of the regular tetrahedron, {3,3}. The paracompact hyperbolic group = [31,1,1,1,1], , contains the symmetry of a 5-cell, {3,3,3}, and thus is represented by [(3,3,3)[31,1,1,1,1]] = [3,4,3,3,3].
An asterisk * superscript is effectively an inverse operation, creating radical subgroups removing connected of odd-ordered mirrors.[7]
Looking at generators, the double symmetry is seen as adding a new operator that maps symmetric positions in the Coxeter diagram, making some original generators redundant. For 3D space groups, and 4D point groups, Coxeter defines an index two subgroup of [[X]], [[X]+], which he defines as the product of the original generators of [X] by the doubling generator. This looks similar to [[X]]+, which is the chiral subgroup of [[X]]. So for example the 3D space groups [[4,3,4]]+ (I432, 211) and [[4,3,4]+] (Pm3n, 223) are distinct subgroups of [[4,3,4]] (Im3m, 229).
In one dimension, the bilateral group [ ] represents a single mirror symmetry, abstract Dih1 or Z2, symmetry order 2. It is represented as a Coxeter–Dynkin diagram with a single node, . The identity group is the direct subgroup [ ]+, Z1, symmetry order 1. The + superscript simply implies that alternate mirror reflections are ignored, leaving the identity group in this simplest case. Coxeter used a single open node to represent an alternation, .
A regular hexagon, with markings on edges and vertices has 8 symmetries: [6], [3], [2], [1], [6]+, [3]+, [2]+, [1]+, with [3] and [1] existing in two forms, depending whether the mirrors are on the edges or vertices.
In two dimensions, the rectangular group [2], abstract D22 or D4, also can be represented as a direct product [ ]×[ ], being the product of two bilateral groups, represents two orthogonal mirrors, with Coxeter diagram, , with order 4. The 2 in [2] comes from linearization of the orthogonal subgraphs in the Coxeter diagram, as with explicit branch order 2. The rhombic group, [2]+ ( or ), half of the rectangular group, the point reflection symmetry, Z2, order 2.
Coxeter notation to allow a 1 place-holder for lower rank groups, so [1] is the same as [ ], and [1+] or [1]+ is the same as [ ]+ and Coxeter diagram .
The full p-gonal group [p], abstract dihedral group D2p, (nonabelian for p>2), of order 2p, is generated by two mirrors at angle π/p, represented by Coxeter diagram . The p-gonal subgroup [p]+, cyclic groupZp, of order p, generated by a rotation angle of π/p.
Coxeter notation uses double-bracking to represent an automorphicdoubling of symmetry by adding a bisecting mirror to the fundamental domain. For example, [[p]] adds a bisecting mirror to [p], and is isomorphic to [2p].
In the limit, going down to one dimensions, the full apeirogonal group is obtained when the angle goes to zero, so [∞], abstractly the infinite dihedral group D∞, represents two parallel mirrors and has a Coxeter diagram . The apeirogonal group [∞]+, , abstractly the infinite cyclic group Z∞, isomorphic to the additive group of the integers, is generated by a single nonzero translation.
In the hyperbolic plane, there is a full pseudogonal group [iπ/λ], and pseudogonal subgroup [iπ/λ]+, . These groups exist in regular infinite-sided polygons, with edge length λ. The mirrors are all orthogonal to a single line.
In three dimensions, the full orthorhombic group or orthorectangular [2,2], abstractly Z23, order 8, represents three orthogonal mirrors, (also represented by Coxeter diagram as three separate dots ). It can also can be represented as a direct product [ ]×[ ]×[ ], but the [2,2] expression allows subgroups to be defined:
First there is a "semidirect" subgroup, the orthorhombic group, [2,2+] ( or ), abstractly Z2×Z2, of order 4. When the + superscript is given inside of the brackets, it means reflections generated only from the adjacent mirrors (as defined by the Coxeter diagram, ) are alternated. In general, the branch orders neighboring the + node must be even. In this case [2,2+] and [2+,2] represent two isomorphic subgroups that are geometrically distinct. The other subgroups are the pararhombic group [2,2]+ ( or ), also order 4, and finally the central group [2+,2+] ( or ) of order 2.
Next there is the full ortho-p-gonal group, [2,p] (), abstractly Z2×D2p, of order 4p, representing two mirrors at a dihedral angle π/p, and both are orthogonal to a third mirror. It is also represented by Coxeter diagram as .
The direct subgroup is called the para-p-gonal group, [2,p]+ ( or ), abstractly D2p, of order 2p, and another subgroup is [2,p+] () abstractly Z2×Zp, also of order 2p.
The full gyro-p-gonal group, [2+,2p] ( or ), abstractly D4p, of order 4p. The gyro-p-gonal group, [2+,2p+] ( or ), abstractly Z2p, of order 2p is a subgroup of both [2+,2p] and [2,2p+].
In all these symmetries, alternate reflections can be removed producing the rotational tetrahedral [3,3]+(), octahedral [3,4]+ (), and icosahedral [3,5]+ () groups of order 12, 24, and 60. The octahedral group also has a unique index 2 subgroup called the pyritohedral symmetry group, [3+,4] ( or ), of order 12, with a mixture of rotational and reflectional symmetry. Pyritohedral symmetry is also an index 5 subgroup of icosahedral symmetry: --> , with virtual mirror 1 across 0, {010}, and 3-fold rotation {12}.
The tetrahedral group, [3,3] (), has a doubling [[3,3]] (which can be represented by colored nodes ), mapping the first and last mirrors onto each other, and this produces the [3,4] ( or ) group. The subgroup [3,4,1+] ( or ) is the same as [3,3], and [3+,4,1+] ( or ) is the same as [3,3]+.
Example rank 3 finite Coxeter groups subgroup trees
In the Euclidean plane there's 3 fundamental reflective groups generated by 3 mirrors, represented by Coxeter diagrams , , and , and are given Coxeter notation as [4,4], [6,3], and [(3,3,3)]. The parentheses of the last group imply the diagram cycle, and also has a shorthand notation [3[3]].
[[4,4]] as a doubling of the [4,4] group produced the same symmetry rotated π/4 from the original set of mirrors.
Direct subgroups of rotational symmetry are: [4,4]+, [6,3]+, and [(3,3,3)]+. [4+,4] and [6,3+] are semidirect subgroups.
Extended duoprismatic groups, [p]×[p] or [p,2,p] or , expressed in relation to its tetragonal disphenoid fundamental domain symmetry.
Rank four groups defined the 4-dimensional duoprismatic groups. In the limit as p and q go to infinity, they degenerate into 2 dimensions and the wallpaper groups.
In , a rank 1 shephard group , order p, is represented as p[ ], [ ]p or ]p[. It has a single generator, representing a 2π/p radian rotation in the Complex plane: .
Coxeter writes the rank 2 complex group, p[q]r represents Coxeter diagram. The p and r should only be suppressed if both are 2, which is the real case [q]. The order of a rank 2 group p[q]r is .[9]
The rank 2 solutions that generate complex polygons are: p[4]2 (p is 2,3,4,...), 3[3]3, 3[6]2, 3[4]3, 4[3]4, 3[8]2, 4[6]2, 4[4]3, 3[5]3, 5[3]5, 3[10]2, 5[6]2, and 5[4]3 with Coxeter diagrams , , , , , , , , , , , , .
Some subgroup relations among infinite Shephard groups
Infinite groups are 3[12]2, 4[8]2, 6[6]2, 3[6]3, 6[4]3, 4[4]4, and 6[3]6 or , , , , , , .
Index 2 subgroups exists by removing a real reflection: p[2q]2 → p[q]p. Also index r subgroups exist for 4 branches: p[4]r → p[r]p.
For the infinite family p[4]2, for any p = 2, 3, 4,..., there are two subgroups: p[4]2 → [p], index p, while and p[4]2 → p[ ]×p[ ], index 2.
Computation with reflection matrices as symmetry generators
A Coxeter group, represented by Coxeter diagram, is given Coxeter notation [p,q] for the branch orders. Each node in the Coxeter diagram represents a mirror, by convention called ρi (and matrix Ri). The generators of this group [p,q] are reflections: ρ0, ρ1, and ρ2. Rotational subsymmetry is given as products of reflections: By convention, σ0,1 (and matrix S0,1) = ρ0ρ1 represents a rotation of angle π/p, and σ1,2 = ρ1ρ2 is a rotation of angle π/q, and σ0,2 = ρ0ρ2 represents a rotation of angle π/2.
[p,q]+, , is an index 2 subgroup represented by two rotation generators, each a products of two reflections: σ0,1, σ1,2, and representing rotations of π/p, and π/q angles respectively.
With one even branch, [p+,2q], or , is another subgroup of index 2, represented by rotation generator σ0,1, and reflectional ρ2.
With even branches, [2p+,2q+], , is a subgroup of index 4 with two generators, constructed as a product of all three reflection matrices: By convention as: ψ0,1,2 and ψ1,2,0, which are rotary reflections, representing a reflection and rotation or reflection.
In the case of affine Coxeter groups like , or , one mirror, usually the last, is translated off the origin. A translation generator τ0,1 (and matrix T0,1) is constructed as the product of two (or an even number of) reflections, including the affine reflection. A transreflection (reflection plus a translation) can be the product of an odd number of reflections φ0,1,2 (and matrix V0,1,2), like the index 4 subgroup : [4+,4+] = .
Another composite generator, by convention as ζ (and matrix Z), represents the inversion, mapping a point to its inverse. For [4,3] and [5,3], ζ = (ρ0ρ1ρ2)h/2, where h is 6 and 10 respectively, the Coxeter number for each family. For 3D Coxeter group [p,q] (), this subgroup is a rotary reflection [2+,h+].
Coxeter groups are categorized by their rank, being the number of nodes in its Coxeter-Dynkin diagram. The structure of the groups are also given with their abstract group types: In this article, the abstract dihedral groups are represented as Dihn, and cyclic groups are represented by Zn, with Dih1=Z2.
Example, in 2D, the Coxeter group [p] () is represented by two reflection matrices R0 and R1, The cyclic symmetry [p]+ () is represented by rotation generator of matrix S0,1.
[p],
Reflections
Rotation
Name
R0
R1
S0,1=R0×R1
Order
2
2
p
Matrix
[2],
Reflections
Rotation
Name
R0
R1
S0,1=R0×R1
Order
2
2
2
Matrix
[3],
Reflections
Rotation
Name
R0
R1
S0,1=R0×R1
Order
2
2
3
Matrix
[4],
Reflections
Rotation
Name
R0
R1
S0,1=R0×R1
Order
2
2
4
Matrix
[6],
Reflections
Rotation
Name
R0
R1
S0,1=R0×R1
Order
2
2
6
Matrix
[8],
Reflections
Rotation
Name
R0
R1
S0,1=R0×R1
Order
2
2
8
Matrix
Rank 3
The finite rank 3 Coxeter groups are [1,p], [2,p], [3,3], [3,4], and [3,5].
To reflect a point through a plane (which goes through the origin), one can use , where is the 3×3 identity matrix and is the three-dimensional unit vector for the vector normal of the plane. If the L2 norm of and is unity, the transformation matrix can be expressed as:
[p,2]
Example fundamental domains, [5,2], as spherical triangles
The reducible 3-dimensional finite reflective group is dihedral symmetry, [p,2], order 4p, . The reflection generators are matrices R0, R1, R2. R02=R12=R22=(R0×R1)3=(R1×R2)3=(R0×R2)2=Identity. [p,2]+ () is generated by 2 of 3 rotations: S0,1, S1,2, and S0,2. An order protoreflection is generated by V0,1,2, the product of all 3 reflections.
[p,2],
Reflections
Rotation
Rotoreflection
Name
R0
R1
R2
S0,1
S1,2
S0,2
V0,1,2
Group
Order
2
2
2
p
2
2p
Matrix
[3,3]
reflection lines for [3,3] =
The simplest irreducible 3-dimensional finite reflective group is tetrahedral symmetry, [3,3], order 24, . The reflection generators, from a D3=A3 construction, are matrices R0, R1, R2. R02=R12=R22=(R0×R1)3=(R1×R2)3=(R0×R2)2=Identity. [3,3]+ () is generated by 2 of 3 rotations: S0,1, S1,2, and S0,2. A trionic subgroup, isomorphic to [2+,4], order 8, is generated by S0,2 and R1. An order 4 rotoreflection is generated by V0,1,2, the product of all 3 reflections.
[3,3],
Reflections
Rotations
Rotoreflection
Name
R0
R1
R2
S0,1
S1,2
S0,2
V0,1,2
Name
Order
2
2
2
3
2
4
Matrix
(0,1,−1)n
(1,−1,0)n
(0,1,1)n
(1,1,1)axis
(1,1,−1)axis
(1,0,0)axis
[4,3]
Reflection lines for [4,3] =
Another irreducible 3-dimensional finite reflective group is octahedral symmetry, [4,3], order 48, . The reflection generators matrices are R0, R1, R2. R02=R12=R22=(R0×R1)4=(R1×R2)3=(R0×R2)2=Identity. Chiral octahedral symmetry, [4,3]+, () is generated by 2 of 3 rotations: S0,1, S1,2, and S0,2. Pyritohedral symmetry [4,3+], () is generated by reflection R0 and rotation S1,2. A 6-fold rotoreflection is generated by V0,1,2, the product of all 3 reflections.
[4,3],
Reflections
Rotations
Rotoreflection
Name
R0
R1
R2
S0,1
S1,2
S0,2
V0,1,2
Group
Order
2
2
2
4
3
2
6
Matrix
(0,0,1)n
(0,1,−1)n
(1,−1,0)n
(1,0,0)axis
(1,1,1)axis
(1,−1,0)axis
[5,3]
Reflection lines for [5,3] =
A final irreducible 3-dimensional finite reflective group is icosahedral symmetry, [5,3], order 120, . The reflection generators matrices are R0, R1, R2. R02=R12=R22=(R0×R1)5=(R1×R2)3=(R0×R2)2=Identity. [5,3]+ () is generated by 2 of 3 rotations: S0,1, S1,2, and S0,2. A 10-fold rotoreflection is generated by V0,1,2, the product of all 3 reflections.
There are 4 irreducible Coxeter groups in 4 dimensions: [3,3,3], [4,3,3], [31,1,1], [3,4,4], [5,3,3], as well as an infinite family of duoprismatic groups [p,2,q].
[p,2,q]
The duprismatic group, [p,2,q], has order 4pq.
[p,2,q],
Reflections
Name
R0
R1
R2
R3
Group element
Order
2
2
2
2
Matrix
[[p,2,p]]
The duoprismatic group can double in order, to 8p2, with a 2-fold rotation between the two planes.
[[p,2,p]],
Rotation
Reflections
Name
T
R0
R1
R2=TR1T
R3=TR0T
Element
Order
2
2
2
Matrix
[3,3,3]
Hypertetrahedral symmetry, [3,3,3], order 120, is easiest to represent with 4 mirrors in 5-dimensions, as a subgroup of [4,3,3,3].
[3,3,3],
Reflections
Rotations
Rotoreflections
Double rotation
Name
R0
R1
R2
R3
S0,1
S1,2
S2,3
S0,2
S1,3
S2,3
V0,1,2
V0,1,3
W0,1,2,3
Name
Order
2
2
2
2
3
2
4
6
5
Matrix
(0,0,0,1,-1)n
(0,0,1,−1,0)n
(0,1,−1,0,0)n
(1,−1,0,0,0)n
[[3,3,3]]
The extended group [[3,3,3]], order 240, is doubled by a 2-fold rotation matrix T, here reversing coordinate order and sign: There are 3 generators {T, R0, R1}. Since T is self-reciprocal R3=TR0T, and R2=TR1T.
[[3,3,3]],
Rotation
Reflections
Name
T
R0
R1
TR1T=R2
TR0T=R3
Element group
Order
2
2
2
2
2
Matrix
(0,0,0,1,-1)n
(0,0,1,−1,0)n
(0,1,−1,0,0)n
(1,−1,0,0,0)n
[4,3,3]
A irreducible 4-dimensional finite reflective group is hyperoctahedral group (or hexadecachoric group (for 16-cell), B4=[4,3,3], order 384, . The reflection generators matrices are R0, R1, R2, R3. R02=R12=R22=R32=(R0×R1)4=(R1×R2)3=(R2×R3)3=(R0×R2)2=(R1×R3)2=(R0×R3)2=Identity.
Chiral hyperoctahedral symmetry, [4,3,3]+, () is generated by 3 of 6 rotations: S0,1, S1,2, S2,3, S0,2, S1,3, and S0,3. Hyperpyritohedral symmetry [4,(3,3)+], () is generated by reflection R0 and rotations S1,2 and S2,3. An 8-fold double rotation is generated by W0,1,2,3, the product of all 4 reflections.
[4,3,3],
Reflections
Rotations
Rotoreflection
Double rotation
Name
R0
R1
R2
R3
S0,1
S1,2
S2,3
S0,2
S1,3
S0,3
V1,2,3
V0,1,3
V0,1,2
V0,2,3
W0,1,2,3
Group
Order
2
2
2
2
4
3
2
4
6
8
Matrix
(0,0,0,1)n
(0,0,1,−1)n
(0,1,−1,0)n
(1,−1,0,0)n
[3,31,1]
A half group of [4,3,3] is [3,31,1], , order 192. It shares 3 generators with [4,3,3] group, but has two copies of an adjacent generator, one reflected across the removed mirror.
[3,31,1],
Reflections
Name
R0
R1
R2
R3
Group
Order
2
2
2
2
Matrix
(1,−1,0,0)n
(0,1,−1,0)n
(0,0,1,−1)n
(0,0,1,1)n
[3,4,3]
A irreducible 4-dimensional finite reflective group is Icositetrachoric group (for 24-cell), F4=[3,4,3], order 1152, . The reflection generators matrices are R0, R1, R2, R3. R02=R12=R22=R32=(R0×R1)3=(R1×R2)4=(R2×R3)3=(R0×R2)2=(R1×R3)2=(R0×R3)2=Identity.
Chiral icositetrachoric symmetry, [3,4,3]+, () is generated by 3 of 6 rotations: S0,1, S1,2, S2,3, S0,2, S1,3, and S0,3. Ionic diminished [3,4,3+] group, () is generated by reflection R0 and rotations S1,2 and S2,3. A 12-fold double rotation is generated by W0,1,2,3, the product of all 4 reflections.
[3,4,3],
Reflections
Rotations
Name
R0
R1
R2
R3
S0,1
S1,2
S2,3
S0,2
S1,3
S0,3
Element group
Order
2
2
2
2
3
4
3
2
Matrix
(1,−1,0,0)n
(0,1,−1,0)n
(0,0,1,0)n
(−1,−1,−1,−1)n
[3,4,3],
Rotoreflection
Double rotation
Name
V1,2,3
V0,1,3
V0,1,2
V0,2,3
W0,1,2,3
Element group
Order
6
12
Matrix
[[3,4,3]]
The group [[3,4,3]] extends [3,4,3] by a 2-fold rotation, T, doubling order to 2304.
The hyper-icosahedral symmetry, [5,3,3], order 14400, . The reflection generators matrices are R0, R1, R2, R3. R02=R12=R22=R32=(R0×R1)5=(R1×R2)3=(R2×R3)3=(R0×R2)2=(R0×R3)2=(R1×R3)2=Identity. [5,3,3]+ () is generated by 3 rotations: S0,1 = R0×R1, S1,2 = R1×R2, S2,3 = R2×R3, etc.
[5,3,3],
Reflections
Name
R0
R1
R2
R3
Element group
Order
2
2
2
2
Matrix
(1,0,0,0)n
(φ,1,φ−1,0)n
(0,1,0,0)n
(0,−1,φ,1−φ)n
Rank 8
[34,2,1]
The E8 Coxeter group, [34,2,1], , has 8 mirror nodes, order 696729600 (192x10!). E7 and E6, [33,2,1], , and [32,2,1], can be constructed by ignoring the first mirror or the first two mirrors respectively.
E8=[34,2,1],
Reflections
Name
R0
R1
R2
R3
R4
R5
R6
R7
Element group
Order
2
2
2
2
2
2
2
2
Matrix
(1,-1,0,0,0,0,0,0)n
(0,1,-1,0,0,0,0,0)n
(0,0,1,-1,0,0,0,0)n
(0,0,0,1,-1,0,0,0)n
(0,0,0,0,1,-1,0,0)n
(0,0,0,0,0,1,-1,0)n
(0,0,0,0,0,1,1,0)n
(1,1,1,1,1,1,1,1)n
Affine rank 2
Affine matrices are represented by adding an extra row and column, the last row being zero except last entry 1. The last column represents a translation vector.
[∞]
The affine group [∞], , can be given by two reflection matrices, x=0 and x=1.
The affine group [4,4], , (p4m), can be given by three reflection matrices, reflections across the x axis (y=0), a diagonal (x=y), and the affine reflection across the line (x=1). [4,4]+ () (p4) is generated by S0,1 S1,2, and S0,2. [4+,4+] () (pgg) is generated by 2-fold rotation S0,2 and glide reflection (transreflection) V0,1,2. [4+,4] () (p4g) is generated by S0,1 and R3. The group [(4,4,2+)] () (cmm), is generated by 2-fold rotation S1,3 and reflection R2.
The affine group [3,6], , (p6m), can be given by three reflection matrices, reflections across the x axis (y=0), line y=(√3/2)x, and vertical line x=1.
The affine group [3[3]] can be constructed as a half group of . R2 is replaced by R'2 = R2×R1×R2, presented by the hyperplane: y+(√3/2)x=2. The fundamental domain is an equilateral triangle with edge length 2.
The affine group is [4,3,4] (), can be given by four reflection matrices. Mirror R0 can be put on z=0 plane. Mirror R1 can be put on plane y=z. Mirror R2 can be put on x=y plane. Mirror R3 can be put on x=1 plane. [4,3,4]+ () is generated by S0,1, S1,2, and S2,3.
The extended group [[4,3,4]] doubles the group order, adding with a 2-fold rotation matrix T, with a fixed axis through points (1,1/2,0) and (1/2,1/2,1/2). The generators are {R0,R1,T}. R2 = T×R1×T and R3 = T×R0×T.
Kaleidoscopes: Selected Writings of H.S.M. Coxeter, editied by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN978-0-471-01003-6[2]
John H. Conway and Derek A. Smith, On Quaternions and Octonions, 2003, ISBN978-1-56881-134-5
The Symmetries of Things 2008, John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, ISBN978-1-56881-220-5 Ch.22 35 prime space groups, ch.25 184 composite space groups, ch.26 Higher still, 4D point groups