오더-5 아페이로겐 타일링

Order-5 apeirogonal tiling
오더-5 아페이로겐 타일링
Order-5 apeirogonal tiling
쌍곡면푸앵카레 디스크 모델
유형 쌍곡선 정규 타일링
꼭지점 구성 5
슐레플리 기호 {∞,5}
와이토프 기호 5 ∞ 2
콕시터 다이어그램 CDel node 1.pngCDel infin.pngCDel node.pngCDel 5.pngCDel node.png
대칭군 [∞,5], (*∞52)
이중 무한 오각형 타일링
특성. 정점-변환, 에지-변환, 면-변환 에지-변환

기하학에서 순서-5 apeirogonal tiling쌍곡면정규 타일링이다. 슐래플리(Schléfli) 기호가 {∞,5}이다.

대칭

이 타일링에 대한 이중은 5개의 이상적인 정점을 가진 오각형 영역인 [1968,5*] 대칭의 기본 영역을 나타낸다.

H2chess 25ib.png

순서-5 apirogonal tiling은 각 꼭지점 주위에 5가지 색상의 apeirogon으로 균일하게 색칠할 수 있으며, 대각선의 초경직 가지를 제외한다.

관련 다면체 및 타일링

이 타일링은 또한 슐래플리 기호 {n,5} 및 콕세터 다이어그램과 함께 8면부터 시작하여 정점당 4면이 있는 일반 다면 및 기울기의 일부로서 위상학적으로 관련이 있으며, n은 무한대로 진행된다.

구면 쌍곡 틸팅
Spherical pentagonal hosohedron.png
{2,5}
CDel node 1.pngCDel 2.pngCDel node.pngCDel 5.pngCDel node.png
Uniform tiling 532-t2.png
{3,5}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
H2-5-4-primal.svg
{4,5}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 5.pngCDel node.png
H2 tiling 255-1.png
{5,5}
CDel node 1.pngCDel 5.pngCDel node.pngCDel 5.pngCDel node.png
H2 tiling 256-1.png
{6,5}
CDel node 1.pngCDel 6.pngCDel node.pngCDel 5.pngCDel node.png
H2 tiling 257-1.png
{7,5}
CDel node 1.pngCDel 7.pngCDel node.pngCDel 5.pngCDel node.png
H2 tiling 258-1.png
{8,5}
CDel node 1.pngCDel 8.pngCDel node.pngCDel 5.pngCDel node.png
... H2 tiling 25i-1.png
{∞,5}
CDel node 1.pngCDel infin.pngCDel node.pngCDel 5.pngCDel node.png
파라콤팩트 균일 아페이로겐/펜타곤 틸팅
대칭: [∞,5], (*∞52) [∞,5]+
(∞52)
[1+,∞,5]
(*∞55)
[∞,5+]
(5*∞)
CDel node 1.pngCDel infin.pngCDel node.pngCDel 5.pngCDel node.png CDel node 1.pngCDel infin.pngCDel node 1.pngCDel 5.pngCDel node.png CDel node.pngCDel infin.pngCDel node 1.pngCDel 5.pngCDel node.png CDel node.pngCDel infin.pngCDel node 1.pngCDel 5.pngCDel node 1.png CDel node.pngCDel infin.pngCDel node.pngCDel 5.pngCDel node 1.png CDel node 1.pngCDel infin.pngCDel node.pngCDel 5.pngCDel node 1.png CDel node 1.pngCDel infin.pngCDel node 1.pngCDel 5.pngCDel node 1.png CDel node h.pngCDel infin.pngCDel node h.pngCDel 5.pngCDel node h.png CDel node h1.pngCDel infin.pngCDel node.pngCDel 5.pngCDel node.png CDel node h1.pngCDel infin.pngCDel node.pngCDel 5.pngCDel node 1.png CDel node.pngCDel infin.pngCDel node h.pngCDel 5.pngCDel node h.png
H2 tiling 25i-1.png H2 tiling 25i-3.png H2 tiling 25i-2.png H2 tiling 25i-6.png H2 tiling 25i-4.png H2 tiling 25i-5.png H2 tiling 25i-7.png Uniform tiling i52-snub.png H2 tiling 55i-1.png
{∞,5} t{{115,5} r{{{195,5} 2t{t{time,5}=t{5,5} 2r{{{195,5}={5,5} rr{reas,5} tr{{data,5} sr{195,5} h{{{195,5} h2{{{195,5} s{5,5}
균일 듀얼
CDel node f1.pngCDel infin.pngCDel node.pngCDel infin.pngCDel node.png CDel node f1.pngCDel infin.pngCDel node f1.pngCDel infin.pngCDel node.png CDel node.pngCDel infin.pngCDel node f1.pngCDel infin.pngCDel node.png CDel node.pngCDel infin.pngCDel node f1.pngCDel infin.pngCDel node f1.png CDel node.pngCDel infin.pngCDel node.pngCDel infin.pngCDel node f1.png CDel node f1.pngCDel infin.pngCDel node.pngCDel infin.pngCDel node f1.png CDel node f1.pngCDel infin.pngCDel node f1.pngCDel infin.pngCDel node f1.png CDel node fh.pngCDel infin.pngCDel node fh.pngCDel infin.pngCDel node fh.png CDel node fh.pngCDel infin.pngCDel node.pngCDel infin.pngCDel node 1.png CDel node fh.pngCDel infin.pngCDel node.pngCDel infin.pngCDel node.png CDel node.pngCDel infin.pngCDel node fh.pngCDel infin.pngCDel node fh.png
H2chess 25ib.png H2chess 25ie.png H2 tiling 25i-1.png H2checkers 25i.png
V∞5 V5.1987.201 V5.1987.5.1987 V∞.10.10 V5 V4.5.4.1987 V4.10.10.10 V3.3.5.3.1987 V (1998.5)5 V3.5.3.3.1987

참고 항목

참조

  • 존 H. 콘웨이, 하이디 버기엘, 차임 굿맨-스트라스, 2008년 사물의 대칭, ISBN978-1-56881-220-5 (19장, 쌍곡선 아르키메데스 테셀레이션)
  • "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.

외부 링크