주문-3 a페이로건 타일링

Order-3 apeirogonal tiling
주문-3 a페이로건 타일링
Order-3 apeirogonal tiling
쌍곡면푸앵카레 디스크 모델
유형 쌍곡선 정규 타일링
꼭지점 구성 3
슐레플리 기호 {∞,3}
t{{propert,properties}
t(수,수,수,수)
와이토프 기호 3 ∞ 2
2 ∞ ∞
∞ ∞ ∞
콕시터 다이어그램 CDel node 1.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node.png
CDel node 1.pngCDel infin.pngCDel node 1.pngCDel infin.pngCDel node.png
CDel labelinfin.pngCDel branch 11.pngCDel split2-ii.pngCDel node 1.png
대칭군 [∞,3], (*∞32)
[∞,∞], (*∞∞2)
[(∞,∞,∞)], (*∞∞∞)
이중 무한순 삼각 타일링
특성. 정점-변환, 에지-변환, 얼굴-변환

기하학에서 순서-3 apeirogonal tiling쌍곡면의 정규 타일링이다. 슐레플리 기호 { {,3}로 표현되며, 각 꼭지점 주위에 3개의 정규 아페이로곤이 있다. 각각의 아페이로곤은 호모시새겨져 있다.

순서 2 apeirogonal tiling은 유클리드 평면의 무한 다이헤드론(infinite dihedron)을 {1992,2}로 나타낸다.

이미지들

각각의 아페이로곤 면은 포앵카레 디스크 모델에서 원처럼 보이는 호로사이클에 의해 제한되며, 내부적으로는 투영 원 경계와 접한다.

Order-3 apeirogonal tiling one cell horocycle.png

균일 배색

유클리드 육각 타일링과 마찬가지로 각각 다른 반사 삼각형 그룹 도메인에서 나오는 오더-3 a페이로겐 타일링의 3가지 균일한 색상이 있다.

정규 잘라내기
H2-I-3-dual.svg
{∞,3}
CDel node 1.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node.png
H2 tiling 2ii-3.png
t0,1{{propert,properties}
CDel node 1.pngCDel infin.pngCDel node 1.pngCDel infin.pngCDel node.png
H2 tiling 2ii-6.png
t1,2{{propert,properties}
CDel node.pngCDel infin.pngCDel node 1.pngCDel infin.pngCDel node 1.png
H2 tiling iii-7.png
t{{∞}[3]
CDel node 1.pngCDel split1-ii.pngCDel branch 11.pngCDel labelinfin.png
쌍곡선 삼각형 그룹
H2checkers 23i.png
[∞,3]
H2checkers 2ii.png
[∞,∞]
Infinite-order triangular tiling.svg
[(∞,∞,∞)]

대칭

이 타일링에 대한 이중은 [(∞, ,, ∞, ))](*∞∞) 대칭의 기본 영역을 나타낸다. 거울 제거와 교대로 [((, ∞, ∞, ∞)]로 구성된 15개의 작은 지수 부분군(7개 고유)이 있다. 거울은 가지 주문이 모두 균등하면 제거할 수 있고, 주변 가지 주문을 절반으로 줄일 수 있다. 거울 두 개를 제거하면 제거된 거울이 만나는 곳에 반차량의 회전 지점이 남게 된다. 이러한 이미지에서 기본 도메인은 흑백으로 번갈아 가며 색상의 경계에는 거울이 존재한다. 대칭은 기본 영역을 이등분하는 거울을 추가하면 by∞2 대칭으로 배가될 수 있다. 기본 영역을 거울 3개로 나누면 ∞32 대칭이 생성된다.

더 큰 부분군이 구성되면 [(∞, *∞, ∞, ∞)], ( 8*∞)가 제거되면 지수 8은 (*∞)이 된다.

관련 다면체 및 틸팅

이 타일링은 슐래플리 기호 {n,3}이(가) 있는 일반 폴리헤드라의 시퀀스의 일부로서 위상학적으로 관련이 있다.

*n32 일반 틸팅의 대칭 돌연변이: {n,3}
구면 유클리드 주 콤팩트 하이퍼브. 파라코. 비대칭 쌍곡선
Spherical trigonal hosohedron.png Uniform tiling 332-t0.png Uniform tiling 432-t0.png Uniform tiling 532-t0.png Uniform polyhedron-63-t0.png Heptagonal tiling.svg H2-8-3-dual.svg H2-I-3-dual.svg H2 tiling 23j12-1.png H2 tiling 23j9-1.png H2 tiling 23j6-1.png H2 tiling 23j3-1.png
{2,3} {3,3} {4,3} {5,3} {6,3} {7,3} {8,3} {∞,3} {12i,3} {9i,3} {6i,3} {3i,3}
[1968,3] 패밀리의 파라콤팩트 유니폼 틸팅
대칭: [∞,3], (*∞32) [∞,3]+
(∞32)
[1+,∞,3]
(*∞33)
[∞,3+]
(3*∞)
CDel node 1.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node.png CDel node 1.pngCDel infin.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node.pngCDel infin.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node.pngCDel infin.pngCDel node 1.pngCDel 3.pngCDel node 1.png CDel node.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node 1.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node 1.pngCDel infin.pngCDel node 1.pngCDel 3.pngCDel node 1.png CDel node h.pngCDel infin.pngCDel node h.pngCDel 3.pngCDel node h.png CDel node h1.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node.png CDel node h1.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node.pngCDel infin.pngCDel node h.pngCDel 3.pngCDel node h.png
CDel node h0.pngCDel infin.pngCDel node 1.pngCDel 3.pngCDel node.png
= CDel labelinfin.pngCDel branch 11.pngCDel split2.pngCDel node.png
CDel node h0.pngCDel infin.pngCDel node 1.pngCDel 3.pngCDel node 1.png
= CDel labelinfin.pngCDel branch 11.pngCDel split2.pngCDel node 1.png
CDel node h0.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node 1.png
= CDel labelinfin.pngCDel branch.pngCDel split2.pngCDel node 1.png
CDel node 1.pngCDel infin.pngCDel node h.pngCDel 3.pngCDel node h.png CDel node h1.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node.png =
CDel labelinfin.pngCDel branch 10ru.pngCDel split2.pngCDel node.png 또는
CDel node h1.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node 1.png =
CDel labelinfin.pngCDel branch 10ru.pngCDel split2.pngCDel node 1.png 또는
CDel node h0.pngCDel infin.pngCDel node h.pngCDel 3.pngCDel node h.png
= CDel labelinfin.pngCDel branch hh.pngCDel split2.pngCDel node h.png
H2-I-3-dual.svg H2 tiling 23i-3.png H2 tiling 23i-2.png H2 tiling 23i-6.png H2 tiling 23i-4.png H2 tiling 23i-5.png H2 tiling 23i-7.png Uniform tiling i32-snub.png H2 tiling 33i-1.png H2 snub 33ia.png
{∞,3} t{{{propert,3} r{{{195,3} t{3,7} {3,∞} rr{reas,3} tr{propert,3} sr{sr,3} h{{{no,3} h2{{{no,3} s{3,7}
균일 듀얼
CDel node f1.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node.png CDel node f1.pngCDel infin.pngCDel node f1.pngCDel 3.pngCDel node.png CDel node.pngCDel infin.pngCDel node f1.pngCDel 3.pngCDel node.png CDel node.pngCDel infin.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node f1.png CDel node f1.pngCDel infin.pngCDel node f1.pngCDel 3.pngCDel node f1.png CDel node fh.pngCDel infin.pngCDel node fh.pngCDel 3.pngCDel node fh.png CDel node fh.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node.png CDel node.pngCDel infin.pngCDel node fh.pngCDel 3.pngCDel node fh.png
H2 tiling 23i-4.png Ord-infin triakis triang til.png Ord3infin qreg rhombic til.png H2checkers 33i.png H2-I-3-dual.svg Deltoidal triapeirogonal til.png H2checkers 23i.png Order-3-infinite floret pentagonal tiling.png Alternate order-3 apeirogonal tiling.png
V∞3 V3.1987.1987 V(3.219) V6.6.1987 V3 V4.3.4.1987 V4.6.1987 V3.3.3.3.1987 V(3.319) V3.3.3.3.3.1987
[직렬,직렬] 계열의 파라콤팩트 유니폼 틸팅
CDel node 1.pngCDel infin.pngCDel node.pngCDel infin.pngCDel node.png
= CDel node h1.pngCDel 4.pngCDel node.pngCDel infin.pngCDel node.png
= CDel node 1.pngCDel split1-ii.pngCDel branch.pngCDel labelinfin.png
CDel node 1.pngCDel infin.pngCDel node 1.pngCDel infin.pngCDel node.png
= CDel node h1.pngCDel 4.pngCDel node.pngCDel infin.pngCDel node 1.png
= CDel node 1.pngCDel split1-ii.pngCDel branch 11.pngCDel labelinfin.png
CDel node.pngCDel infin.pngCDel node 1.pngCDel infin.pngCDel node.png
= CDel node h0.pngCDel 4.pngCDel node.pngCDel infin.pngCDel node 1.png
= CDel labelinfin.pngCDel branch 11.pngCDel split2-ii.pngCDel node.png
CDel node.pngCDel infin.pngCDel node 1.pngCDel infin.pngCDel node 1.png
= CDel node h1.pngCDel 4.pngCDel node.pngCDel infin.pngCDel node 1.png
= CDel labelinfin.pngCDel branch 11.pngCDel split2-ii.pngCDel node 1.png
CDel node.pngCDel infin.pngCDel node.pngCDel infin.pngCDel node 1.png
= CDel node h1.pngCDel 4.pngCDel node.pngCDel infin.pngCDel node.png
= CDel labelinfin.pngCDel branch.pngCDel split2-ii.pngCDel node 1.png
CDel node 1.pngCDel infin.pngCDel node.pngCDel infin.pngCDel node 1.png
= CDel node h0.pngCDel 4.pngCDel node 1.pngCDel infin.pngCDel node.png
CDel node 1.pngCDel infin.pngCDel node 1.pngCDel infin.pngCDel node 1.png
= CDel node h0.pngCDel 4.pngCDel node 1.pngCDel infin.pngCDel node 1.png
H2 tiling 2ii-1.png H2 tiling 2ii-3.png H2 tiling 2ii-2.png H2 tiling 2ii-6.png H2 tiling 2ii-4.png H2 tiling 2ii-5.png H2 tiling 2ii-7.png
{∞,∞} t{{propert,properties} r{{{propert,properties} 2t{t{time,properties}=t{time,properties} 2r{{{190,190}={190,190} rr{reas,reas} tr{propert,properties}
이중 틸팅
CDel node f1.pngCDel infin.pngCDel node.pngCDel infin.pngCDel node.png CDel node f1.pngCDel infin.pngCDel node f1.pngCDel infin.pngCDel node.png CDel node.pngCDel infin.pngCDel node f1.pngCDel infin.pngCDel node.png CDel node.pngCDel infin.pngCDel node f1.pngCDel infin.pngCDel node f1.png CDel node.pngCDel infin.pngCDel node.pngCDel infin.pngCDel node f1.png CDel node f1.pngCDel infin.pngCDel node.pngCDel infin.pngCDel node f1.png CDel node f1.pngCDel infin.pngCDel node f1.pngCDel infin.pngCDel node f1.png
H2chess 2iib.png H2chess 2iif.png H2chess 2iia.png H2chess 2iie.png H2chess 2iic.png H2chess 2iid.png H2checkers 2ii.png
V∞ V∞.∞.∞.∞ V (1998.18)2 V∞.∞.∞.∞ V∞ V4.1984.4.1987 V4.4.1987
교대
[1+,∞,∞]
(*∞∞2)
[∞+,∞]
(∞*∞)
[∞,1+,∞]
(*∞∞∞∞)
[∞,∞+]
(∞*∞)
[∞,∞,1+]
(*∞∞2)
[(∞,∞,2+)]
(2*∞∞)
[∞,∞]+
(2∞∞)
CDel node h.pngCDel infin.pngCDel node.pngCDel infin.pngCDel node.png CDel node h.pngCDel infin.pngCDel node h.pngCDel infin.pngCDel node.png CDel node.pngCDel infin.pngCDel node h.pngCDel infin.pngCDel node.png CDel node.pngCDel infin.pngCDel node h.pngCDel infin.pngCDel node h.png CDel node.pngCDel infin.pngCDel node.pngCDel infin.pngCDel node h.png CDel node h.pngCDel infin.pngCDel node.pngCDel infin.pngCDel node h.png CDel node h.pngCDel infin.pngCDel node h.pngCDel infin.pngCDel node h.png
H2 tiling 2ii-1.png H2 tiling 33i-1.png H2 tiling 44i-1.png H2 tiling 33i-2.png H2 tiling 2ii-4.png Uniform tiling ii2-snub.png
h{{{now,properties} s{{proper,properties} hr{hrp,properties} s{{proper,properties} h2{{{now,properties} 흐르{{∞,∞} sr{sr,properties}
교류 듀얼
CDel node fh.pngCDel infin.pngCDel node.pngCDel infin.pngCDel node.png CDel node fh.pngCDel infin.pngCDel node fh.pngCDel infin.pngCDel node.png CDel node.pngCDel infin.pngCDel node fh.pngCDel infin.pngCDel node.png CDel node.pngCDel infin.pngCDel node fh.pngCDel infin.pngCDel node fh.png CDel node.pngCDel infin.pngCDel node.pngCDel infin.pngCDel node fh.png CDel node fh.pngCDel infin.pngCDel node.pngCDel infin.pngCDel node fh.png CDel node fh.pngCDel infin.pngCDel node fh.pngCDel infin.pngCDel node fh.png
H2 tiling 2ii-4.png H2chess 44ib.png H2 tiling 2ii-1.png Infinitely-infinite-order floret pentagonal tiling.png
V (1998.18) V(3.319) V (1998.4)4 V(3.319) V∞ V(4.168.4)2 V3.3.1983.3.1987
[(수,수,수)] 계열의 파라콤팩트 균일 기울기
CDel labelinfin.pngCDel branch 01rd.pngCDel split2-ii.pngCDel node.png CDel labelinfin.pngCDel branch 01rd.pngCDel split2-ii.pngCDel node 1.png CDel labelinfin.pngCDel branch.pngCDel split2-ii.pngCDel node 1.png CDel labelinfin.pngCDel branch 10ru.pngCDel split2-ii.pngCDel node 1.png CDel labelinfin.pngCDel branch 10ru.pngCDel split2-ii.pngCDel node.png CDel labelinfin.pngCDel branch 11.pngCDel split2-ii.pngCDel node.png CDel labelinfin.pngCDel branch 11.pngCDel split2-ii.pngCDel node 1.png
CDel node h1.pngCDel infin.pngCDel node.pngCDel infin.pngCDel node.png CDel node h1.pngCDel infin.pngCDel node.pngCDel infin.pngCDel node 1.png CDel node h0.pngCDel infin.pngCDel node.pngCDel infin.pngCDel node 1.png CDel node h1.pngCDel infin.pngCDel node.pngCDel infin.pngCDel node 1.png CDel node h1.pngCDel infin.pngCDel node.pngCDel infin.pngCDel node.png CDel node h0.pngCDel infin.pngCDel node 1.pngCDel infin.pngCDel node.png CDel node h0.pngCDel infin.pngCDel node 1.pngCDel infin.pngCDel node 1.png
H2 tiling iii-1.png H2 tiling iii-3.png H2 tiling iii-2.png H2 tiling iii-6.png H2 tiling iii-4.png H2 tiling iii-5.png H2 tiling iii-7.png
(∞,∞,∞)
h{{{now,properties}
r(∞, ∞, ∞)
h2{{{now,properties}
(∞,∞,∞)
h{{{now,properties}
r(∞, ∞, ∞)
h2{{{now,properties}
(∞,∞,∞)
h{{{now,properties}
r(∞, ∞, ∞)
r{{{propert,properties}
t(수,수,수,수)
t{{propert,properties}
이중 틸팅
H2chess iiia.png H2chess iiif.png H2chess iiib.png H2chess iiid.png H2chess iiic.png H2chess iiie.png Infinite-order triangular tiling.svg
V∞ V∞.∞.∞.∞.∞.∞.∞ V∞ V∞.∞.∞.∞.∞.∞.∞ V∞ V∞.∞.∞.∞.∞.∞.∞ V∞.∞.∞.∞
교대
[(1+,∞,∞,∞)]
(*∞∞∞∞)
[∞+,∞,∞)]
(∞*∞)
[∞,1+,∞,∞)]
(*∞∞∞∞)
[∞,∞+,∞)]
(∞*∞)
[(∞,∞,∞,1+)]
(*∞∞∞∞)
[(∞,∞,∞+)]
(∞*∞)
[∞,∞,∞)]+
(∞∞∞)
CDel labelinfin.pngCDel branch 0hr.pngCDel split2-ii.pngCDel node.png CDel labelinfin.pngCDel branch 0hr.pngCDel split2-ii.pngCDel node h.png CDel labelinfin.pngCDel branch.pngCDel split2-ii.pngCDel node h1.png CDel labelinfin.pngCDel branch h0r.pngCDel split2-ii.pngCDel node h.png CDel labelinfin.pngCDel branch h0r.pngCDel split2-ii.pngCDel node.png CDel labelinfin.pngCDel branch hh.pngCDel split2-ii.pngCDel node.png CDel labelinfin.pngCDel branch hh.pngCDel split2-ii.pngCDel node h.png
H2 tiling 2ii-1.png H2 tiling 44i-1.png H2 tiling 2ii-1.png H2 tiling 44i-1.png H2 tiling 2ii-1.png H2 tiling 44i-1.png Uniform tiling iii-snub.png
교류 듀얼
H2 tiling 2ii-4.png H2chess 44ib.png H2 tiling 2ii-4.png H2chess 44ib.png H2 tiling 2ii-4.png H2chess 44ib.png
V (1998.18) V (1998.4)4 V (1998.18) V (1998.4)4 V (1998.18) V (1998.4)4 V3.1987.3.1987.3.1987

참고 항목

참조

  • 존 H. 콘웨이, 하이디 버기엘, 차임 굿맨-스트라스, 2008년 사물의 대칭, ISBN978-1-56881-220-5 (19장, 쌍곡선 아르키메데스 테셀레이션)
  • "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.

외부 링크