순서-5제곱 타일링
Order-5 square tiling순서-5제곱 타일링 | |
---|---|
![]() 쌍곡면의 푸앵카레 디스크 모델 | |
유형 | 쌍곡선 정규 타일링 |
꼭지점 구성 | 45 |
슐레플리 기호 | {4,5} |
와이토프 기호 | 5 4 2 |
콕시터 다이어그램 | ![]() ![]() ![]() ![]() ![]() |
대칭군 | [5,4], (*542) |
이중 | 오더-4 오각형 타일링 |
특성. | 정점-변환, 에지-변환, 얼굴-변환 |
기하학에서 순서-5 사각형 타일링은 쌍곡면의 규칙적인 타일링이다. 그것은 {4,5}의 Schléfli 기호를 가지고 있다.
관련 다면체 및 타일링
구면 | 쌍곡 틸팅 | |||||||
---|---|---|---|---|---|---|---|---|
![]() {2,5} ![]() ![]() ![]() ![]() ![]() | ![]() {3,5} ![]() ![]() ![]() ![]() ![]() | ![]() {4,5} ![]() ![]() ![]() ![]() ![]() | ![]() {5,5} ![]() ![]() ![]() ![]() ![]() | ![]() {6,5} ![]() ![]() ![]() ![]() ![]() | ![]() {7,5} ![]() ![]() ![]() ![]() ![]() | ![]() {8,5} ![]() ![]() ![]() ![]() ![]() | ... | ![]() {∞,5} ![]() ![]() ![]() ![]() ![]() |
이 타일링은 정규 다면체 및 꼭지점 그림(4n)이 있는 기울기의 일부로서 위상학적으로 관련이 있다.
*n42 일반 틸팅의 대칭 돌연변이: {4,n} | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
구면 | 유클리드 주 | 콤팩트 쌍곡선 | 파라콤팩트 | ||||||||
![]() {4,3} ![]() ![]() ![]() ![]() ![]() | ![]() {4,4} ![]() ![]() ![]() ![]() ![]() | ![]() {4,5} ![]() ![]() ![]() ![]() ![]() | ![]() {4,6} ![]() ![]() ![]() ![]() ![]() | ![]() {4,7} ![]() ![]() ![]() ![]() ![]() | ![]() {4,8}... ![]() ![]() ![]() ![]() ![]() | ![]() {4,∞} ![]() ![]() ![]() ![]() ![]() |
균일한 오각형/제곱 틸팅 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
대칭: [5,4], (*542) | [5,4]+, (542) | [5+,4], (5*2) | [5,4,1+], (*552) | ||||||||
![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ||
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ||
{5,4} | t{5,4} | r{5,4} | 2t{5,4}=t{4,5} | 2r{5,4}={4,5} | rr{5,4} | tr{5,4} | sr{5,4} | s{5,4} | h{4,5} | ||
균일 듀얼 | |||||||||||
![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ![]() ![]() ![]() ![]() ![]() | ||
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | |||
V54 | V4.10.10 | V4.5.4.5 | V5.8.8 | V45 | V4.4.5.4 | V4.8.10 | V3.3.4.3.5 | V3.3.5.3.5 | V55 |
이 쌍곡선 타일링은 유클리드 3공간에 동일한 꼭지점을 가진 반정형 무한 꼬치 다면체와 관련이 있다.
참조
- 존 H. 콘웨이, 하이디 버기엘, 차임 굿맨-스트라스, 2008년 사물의 대칭, ISBN978-1-56881-220-5 (19장, 쌍곡선 아르키메데스 테셀레이션)
- "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.
참고 항목
![]() | 위키미디어 커먼스는 Order-5 square tiling과 관련된 미디어를 보유하고 있다. |