스너브 사트라아피로겐 타일링
Snub tetraapeirogonal tiling스너브 사트라아피로겐 타일링 | |
---|---|
쌍곡면의 푸앵카레 디스크 모델 | |
유형 | 쌍곡선 균일 타일링 |
꼭지점 구성 | 3.3.4.3.∞ |
슐레플리 기호 | sr{{196,} 또는 {∞4} {\s{\ |
와이토프 기호 | ∞ 4 2 |
콕시터 다이어그램 | 또는 |
대칭군 | [∞,4]+, (∞42) |
이중 | 순서-4-무한플로트 오각형 타일링 |
특성. | 정점 변환 치랄 |
기하학에서 snub triapeirogonal tiling은 쌍곡면의 균일한 타일링이다. 슐레플리 기호(sr{laim,4})를 가지고 있다.
이미지들
검은색 삼각형 사이에 가장자리가 없는 키랄 쌍으로 그려짐:
관련 다면체 및 타일링
스너브 정사각형 타일링은 스너브 다면체 및 정점 그림 3.3.4.3.n의 틸팅의 무한 시리즈에서 마지막이다.
4n2 스너브 틸팅의 대칭 변이: 3.3.4.3.n | ||||||||
---|---|---|---|---|---|---|---|---|
대칭 4n2 | 구면 | 유클리드 주 | 콤팩트 쌍곡선 | 파라콤. | ||||
242 | 342 | 442 | 542 | 642 | 742 | 842 | ∞42 | |
스너브 수치 | ||||||||
구성. | 3.3.4.3.2 | 3.3.4.3.3 | 3.3.4.3.4 | 3.3.4.3.5 | 3.3.4.3.6 | 3.3.4.3.7 | 3.3.4.3.8 | 3.3.4.3.∞ |
자이로 수치 | ||||||||
구성. | V3.3.4.3.2 | V3.3.4.3.3 | V3.3.4.3.4 | V3.3.4.3.5 | V3.3.4.3.6 | V3.3.4.3.7 | V3.3.4.3.8 | V3.3.4.3.1987 |
[1998,4] 계열의 파라콤팩트 유니폼 틸팅 | |||||||
---|---|---|---|---|---|---|---|
{∞,4} | t{{{190,4} | r{{{195,4} | 2t{{t},4}=t{4,4} | 2r{{{{196,4}={4,4} | rr{reas,4} | tr{{propert,4} | |
이중 수치 | |||||||
V∞4 | V4.1987.12 | V(4.19)2 | V8.8.1987 | V4∞ | V43.1987 | V4.8.1987 | |
교대 | |||||||
[1+,∞,4] (*44∞) | [∞+,4] (∞*2) | [∞,1+,4] (*2∞2∞) | [∞,4+] (4*∞) | [∞,4,1+] (*∞∞2) | [(∞,4,2+)] (2*2∞) | [∞,4]+ (∞42) | |
= | = | ||||||
h{{{no,4} | s{{195,4} | hr{hrs,4} | s{4,7} | h{4,610} | hrrr{nu,4} | s{{195,4} | |
교류 듀얼 | |||||||
V (1998.4)4 | V3. (3.219) | V(4.168.4)2 | V3.1987(3.4)2 | V∞∞ | V∞.44 | V3.3.4.3.1987 |
참고 항목
위키미디어 커먼즈에는 Uniform tiling 3-3-4-3-i와 관련된 미디어가 있다. |
참조
- 존 H. 콘웨이, 하이디 버기엘, 차임 굿맨-스트라스, 2008년 사물의 대칭, ISBN978-1-56881-220-5 (19장, 쌍곡선 아르키메데스 테셀레이션)
- "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.