스너브 사트라아피로겐 타일링

Snub tetraapeirogonal tiling
스너브 사트라아피로겐 타일링
Snub tetraapeirogonal tiling
쌍곡면푸앵카레 디스크 모델
유형 쌍곡선 균일 타일링
꼭지점 구성 3.3.4.3.∞
슐레플리 기호 sr{{196,} 또는 {4} {\s{\
와이토프 기호 ∞ 4 2
콕시터 다이어그램 CDel node h.pngCDel infin.pngCDel node h.pngCDel 4.pngCDel node h.png 또는
대칭군 [∞,4]+, (∞42)
이중 순서-4-무한플로트 오각형 타일링
특성. 정점 변환 치랄

기하학에서 snub triapeirogonal tiling쌍곡면의 균일한 타일링이다. 슐레플리 기호(sr{laim,4})를 가지고 있다.

이미지들

검은색 삼각형 사이에 가장자리가 없는 키랄 쌍으로 그려짐:

H2 snub 24ia.pngH2 snub 24ib.png

관련 다면체 및 타일링

스너브 정사각형 타일링은 스너브 다면체 및 정점 그림 3.3.4.3.n의 틸팅의 무한 시리즈에서 마지막이다.

4n2 스너브 틸팅의 대칭 변이: 3.3.4.3.n
대칭
4n2
구면 유클리드 주 콤팩트 쌍곡선 파라콤.
242 342 442 542 642 742 842 ∞42
스너브
수치
Spherical square antiprism.png Spherical snub cube.png Uniform tiling 44-snub.png H2-5-4-snub.svg Uniform tiling 64-snub.png Uniform tiling 74-snub.png Uniform tiling 84-snub.png Uniform tiling i42-snub.png
구성. 3.3.4.3.2 3.3.4.3.3 3.3.4.3.4 3.3.4.3.5 3.3.4.3.6 3.3.4.3.7 3.3.4.3.8 3.3.4.3.
자이로
수치
Spherical tetragonal trapezohedron.png Spherical pentagonal icositetrahedron.png Tiling Dual Semiregular V3-3-4-3-4 Cairo Pentagonal.svg H2-5-4-floret.svg
구성. V3.3.4.3.2 V3.3.4.3.3 V3.3.4.3.4 V3.3.4.3.5 V3.3.4.3.6 V3.3.4.3.7 V3.3.4.3.8 V3.3.4.3.1987
[1998,4] 계열의 파라콤팩트 유니폼 틸팅
CDel node 1.pngCDel infin.pngCDel node.pngCDel 4.pngCDel node.png CDel node 1.pngCDel infin.pngCDel node 1.pngCDel 4.pngCDel node.png CDel node.pngCDel infin.pngCDel node 1.pngCDel 4.pngCDel node.png CDel node.pngCDel infin.pngCDel node 1.pngCDel 4.pngCDel node 1.png CDel node.pngCDel infin.pngCDel node.pngCDel 4.pngCDel node 1.png CDel node 1.pngCDel infin.pngCDel node.pngCDel 4.pngCDel node 1.png CDel node 1.pngCDel infin.pngCDel node 1.pngCDel 4.pngCDel node 1.png
H2 tiling 24i-1.png H2 tiling 24i-3.png H2 tiling 24i-2.png H2 tiling 24i-6.png H2 tiling 24i-4.png H2 tiling 24i-5.png H2 tiling 24i-7.png
{∞,4} t{{{190,4} r{{{195,4} 2t{{t},4}=t{4,4} 2r{{{{196,4}={4,4} rr{reas,4} tr{{propert,4}
이중 수치
CDel node f1.pngCDel infin.pngCDel node.pngCDel 4.pngCDel node.png CDel node f1.pngCDel infin.pngCDel node f1.pngCDel 4.pngCDel node.png CDel node.pngCDel infin.pngCDel node f1.pngCDel 4.pngCDel node.png CDel node.pngCDel infin.pngCDel node f1.pngCDel 4.pngCDel node f1.png CDel node.pngCDel infin.pngCDel node.pngCDel 4.pngCDel node f1.png CDel node f1.pngCDel infin.pngCDel node.pngCDel 4.pngCDel node f1.png CDel node f1.pngCDel infin.pngCDel node f1.pngCDel 4.pngCDel node f1.png
H2chess 24ib.png H2chess 24if.png H2chess 24ia.png H2chess 24ie.png H2chess 24ic.png H2chess 24id.png H2checkers 24i.png
V∞4 V4.1987.12 V(4.19)2 V8.8.1987 V4 V43.1987 V4.8.1987
교대
[1+,∞,4]
(*44∞)
[∞+,4]
(∞*2)
[∞,1+,4]
(*2∞2∞)
[∞,4+]
(4*∞)
[∞,4,1+]
(*∞∞2)
[(∞,4,2+)]
(2*2∞)
[∞,4]+
(∞42)
CDel node h1.pngCDel infin.pngCDel node.pngCDel 4.pngCDel node.png
= CDel branch 10ru.pngCDel split2-44.pngCDel node.png
CDel node h.pngCDel infin.pngCDel node h.pngCDel 4.pngCDel node.png CDel node.pngCDel infin.pngCDel node h.pngCDel 4.pngCDel node.png CDel node.pngCDel infin.pngCDel node h.pngCDel 4.pngCDel node h.png CDel node.pngCDel infin.pngCDel node.pngCDel 4.pngCDel node h1.png
= CDel node.pngCDel split1-ii.pngCDel nodes 10lu.png
CDel node h.pngCDel infin.pngCDel node.pngCDel 4.pngCDel node h.png CDel node h.pngCDel infin.pngCDel node h.pngCDel 4.pngCDel node h.png
h{{{no,4} s{{195,4} hr{hrs,4} s{4,7} h{4,610} hrrr{nu,4} s{{195,4}
H2 tiling 44i-1.png Uniform tiling i42-h01.png H2 tiling 2ii-1.png Uniform tiling i42-snub.png
교류 듀얼
CDel node fh.pngCDel infin.pngCDel node.pngCDel 4.pngCDel node.png CDel node fh.pngCDel infin.pngCDel node fh.pngCDel 4.pngCDel node.png CDel node.pngCDel infin.pngCDel node fh.pngCDel 4.pngCDel node.png CDel node.pngCDel infin.pngCDel node fh.pngCDel 4.pngCDel node fh.png CDel node.pngCDel infin.pngCDel node.pngCDel 4.pngCDel node fh.png CDel node fh.pngCDel infin.pngCDel node.pngCDel 4.pngCDel node fh.png CDel node fh.pngCDel infin.pngCDel node fh.pngCDel 4.pngCDel node fh.png
H2chess 44ib.png H2 tiling 2ii-4.png
V (1998.4)4 V3. (3.219) V(4.168.4)2 V3.1987(3.4)2 V∞ V∞.44 V3.3.4.3.1987

참고 항목

참조

  • 존 H. 콘웨이, 하이디 버기엘, 차임 굿맨-스트라스, 2008년 사물의 대칭, ISBN978-1-56881-220-5 (19장, 쌍곡선 아르키메데스 테셀레이션)
  • "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.

외부 링크