Rhombittraapeirogonal tiling

Rhombitetraapeirogonal tiling
Rhombittraapeirogonal tiling
Rhombitetraapeirogonal tiling
쌍곡면푸앵카레 디스크 모델
유형 쌍곡선 균일 타일링
꼭지점 구성 4.4.∞.4
슐레플리 기호 rr{reas,4} { 4 end{
와이토프 기호 4 ∞ 2
콕시터 다이어그램 CDel node 1.pngCDel infin.pngCDel node.pngCDel 4.pngCDel node 1.png 또는
대칭군 [∞,4], (*∞42)
이중 델토이달 사트라피오권 타일링
특성. 정점 변환

기하학에서, Rhombittraapeirogonal tiling쌍곡면의 균일한 타일링이다. 슐레플리(Schléfli) 기호(rrr{reas,4})를 가지고 있다.

시공

이 타일링에는 두 가지 균일한 구조가 있는데, 하나는 [1994] 또는 (*1942년) 대칭에서 나온 것이고, 둘째로 거울 가운데를 제거한 [1992년+]은 직사각형의 기본 영역[1992년]을 제공한다.

4.4.4.1987의 두 개의 균일한 구조
이름 Rhombittrahexangular tiling
이미지 H2 tiling 24i-5.png Uniform tiling i222-t0123.png
대칭 [∞,4]
(*∞42)
CDel node c1.pngCDel infin.pngCDel node c3.pngCDel 4.pngCDel node c2.png
[∞,∞,∞] = [∞,1+,4]
(*∞222)
CDel nodeab c1-2.pngCDel ia2b-cross.pngCDel nodeab c1-2.png
슐레플리 기호 rr{reas,4} t0,1,2,3{{{propert,properties}
콕시터 다이어그램 CDel node 1.pngCDel infin.pngCDel node.pngCDel 4.pngCDel node 1.png CDel nodes 11.pngCDel ia2b-cross.pngCDel nodes 11.png

대칭

델토이탈 사트라피오권 타일링이라 불리는 이 타일링의 이중은 궤도 대칭의 기본 영역(* (*222)을 나타낸다. 그것의 기본 영역은 3개의 직각을 가진 램버트 4각형이다.

H2chess 24id.pngDeltoidal tetraapeirogonal tiling.png

관련 다면체 및 타일링

*n42 확장 틸팅의 대칭 돌연변이: n.4.4.4
대칭
[n,4], (*n42)
구면 유클리드 주 콤팩트 쌍곡선 파라콤.
*342
[3,4]
*442
[4,4]
*542
[5,4]
*642
[6,4]
*742
[7,4]
*842
[8,4]
*∞42
[∞,4]
확장된
수치
Uniform tiling 432-t02.png Uniform tiling 44-t02.png H2-5-4-cantellated.svg Uniform tiling 64-t02.png Uniform tiling 74-t02.png Uniform tiling 84-t02.png H2 tiling 24i-5.png
구성. 3.4.4.4 4.4.4.4 5.4.4.4 6.4.4.4 7.4.4.4 8.4.4.4 ∞.4.4.4
롬빅
수치
구성의
Spherical deltoidal icositetrahedron.png
V3.4.4.4
Uniform tiling 44-t0.svg
V4.4.4.4
H2-5-4-deltoidal.svg
V5.4.4.4
Deltoidal tetrahexagonal til.png
V6.4.4.4
Deltoidal tetraheptagonal til.png
V7.4.4.4
Deltoidal tetraoctagonal til.png
V8.4.4.4
Deltoidal tetraapeirogonal tiling.png
V∞.4.4.4
[1998,4] 계열의 파라콤팩트 유니폼 틸팅
CDel node 1.pngCDel infin.pngCDel node.pngCDel 4.pngCDel node.png CDel node 1.pngCDel infin.pngCDel node 1.pngCDel 4.pngCDel node.png CDel node.pngCDel infin.pngCDel node 1.pngCDel 4.pngCDel node.png CDel node.pngCDel infin.pngCDel node 1.pngCDel 4.pngCDel node 1.png CDel node.pngCDel infin.pngCDel node.pngCDel 4.pngCDel node 1.png CDel node 1.pngCDel infin.pngCDel node.pngCDel 4.pngCDel node 1.png CDel node 1.pngCDel infin.pngCDel node 1.pngCDel 4.pngCDel node 1.png
H2 tiling 24i-1.png H2 tiling 24i-3.png H2 tiling 24i-2.png H2 tiling 24i-6.png H2 tiling 24i-4.png H2 tiling 24i-5.png H2 tiling 24i-7.png
{∞,4} t{{{190,4} r{{{195,4} 2t{{t},4}=t{4,4} 2r{{{{196,4}={4,4} rr{reas,4} tr{{propert,4}
이중 수치
CDel node f1.pngCDel infin.pngCDel node.pngCDel 4.pngCDel node.png CDel node f1.pngCDel infin.pngCDel node f1.pngCDel 4.pngCDel node.png CDel node.pngCDel infin.pngCDel node f1.pngCDel 4.pngCDel node.png CDel node.pngCDel infin.pngCDel node f1.pngCDel 4.pngCDel node f1.png CDel node.pngCDel infin.pngCDel node.pngCDel 4.pngCDel node f1.png CDel node f1.pngCDel infin.pngCDel node.pngCDel 4.pngCDel node f1.png CDel node f1.pngCDel infin.pngCDel node f1.pngCDel 4.pngCDel node f1.png
H2chess 24ib.png H2chess 24if.png H2chess 24ia.png H2chess 24ie.png H2chess 24ic.png H2chess 24id.png H2checkers 24i.png
V∞4 V4.1987.12 V(4.19)2 V8.8.1987 V4 V43.1987 V4.8.1987
교대
[1+,∞,4]
(*44∞)
[∞+,4]
(∞*2)
[∞,1+,4]
(*2∞2∞)
[∞,4+]
(4*∞)
[∞,4,1+]
(*∞∞2)
[(∞,4,2+)]
(2*2∞)
[∞,4]+
(∞42)
CDel node h1.pngCDel infin.pngCDel node.pngCDel 4.pngCDel node.png
= CDel branch 10ru.pngCDel split2-44.pngCDel node.png
CDel node h.pngCDel infin.pngCDel node h.pngCDel 4.pngCDel node.png CDel node.pngCDel infin.pngCDel node h.pngCDel 4.pngCDel node.png CDel node.pngCDel infin.pngCDel node h.pngCDel 4.pngCDel node h.png CDel node.pngCDel infin.pngCDel node.pngCDel 4.pngCDel node h1.png
= CDel node.pngCDel split1-ii.pngCDel nodes 10lu.png
CDel node h.pngCDel infin.pngCDel node.pngCDel 4.pngCDel node h.png CDel node h.pngCDel infin.pngCDel node h.pngCDel 4.pngCDel node h.png
h{{{no,4} s{{195,4} hr{hrs,4} s{4,7} h{4,610} hrrr{nu,4} s{{195,4}
H2 tiling 44i-1.png Uniform tiling i42-h01.png H2 tiling 2ii-1.png Uniform tiling i42-snub.png
교류 듀얼
CDel node fh.pngCDel infin.pngCDel node.pngCDel 4.pngCDel node.png CDel node fh.pngCDel infin.pngCDel node fh.pngCDel 4.pngCDel node.png CDel node.pngCDel infin.pngCDel node fh.pngCDel 4.pngCDel node.png CDel node.pngCDel infin.pngCDel node fh.pngCDel 4.pngCDel node fh.png CDel node.pngCDel infin.pngCDel node.pngCDel 4.pngCDel node fh.png CDel node fh.pngCDel infin.pngCDel node.pngCDel 4.pngCDel node fh.png CDel node fh.pngCDel infin.pngCDel node fh.pngCDel 4.pngCDel node fh.png
H2chess 44ib.png H2 tiling 2ii-4.png
V (1998.4)4 V3. (3.219) V(4.168.4)2 V3.1987(3.4)2 V∞ V∞.44 V3.3.4.3.1987

참고 항목

참조

  • 존 H. 콘웨이, 하이디 버기엘, 차임 굿맨-스트라스, 2008년 사물의 대칭, ISBN978-1-56881-220-5 (19장, 쌍곡선 아르키메데스 테셀레이션)
  • "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.

외부 링크