히드록시카르본산수용체2
Hydroxycarboxylic acid receptor 2HCAR2 | |||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
식별자 | |||||||||||||||||||||||||||||||||||||||||||||||||||
에일리어스 | HCAR2, GPR109A, HCA2, HM74a, HM74b, NIACR1, PUMAG, Puma-g, 니아신수용체1, 히드록시카르본산수용체2 | ||||||||||||||||||||||||||||||||||||||||||||||||||
외부 ID | OMIM : 609163 MGI : 1933383 HomoloGene : 4391 GenCard : HCAR2 | ||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
위키데이터 | |||||||||||||||||||||||||||||||||||||||||||||||||||
|
히드록시카르본산수용체2(HCA2)는 [5]니아신수용체1(NIACR1) 및 GPR109A로도 알려져 있으며, 인체에서 HCAR2 [6][7][8][9]유전자에 의해 암호화되는 단백질이다.HCA는2 다른 히드록시카르본산 수용체1 HCA 및 HCA와3 마찬가지로 G 결합i/o G 단백질 결합 수용체(GPCR)[10][11]이다.HCA의2 주요 내인성 작용제는 D-β-히드록시낙산 및 낙산(및 이들의 결합염기, β-히드록시낙산 및 [10][11]낙산)이다.HCA는2 또한 니아신(일명 니코틴산)[8][9]의 고친화성 생체 분자 표적이다.
HCA2 활성화는 지방 분해 및 무생물 활동을 억제하고(즉, 지방의 분해와 아테롬성 동맥경화증의 발생을 억제), 혈관확장(즉, 혈관의 확장)을 유도하며, 나이아신 유도 [12]홍조를 중재하는 역할을 한다.
기능.
Gi/Go-coupled G니코틴산(니코틴산)[8][9]에 수용체(GPCR)연결 수용체 HCA2은 high-affinity과 GPCRs.HCA2의 활성화, 혈관 확장(즉 dilat을 유발하고 아테롬을 발생시키는 지질 분해성 활동(즉, 지방의 붕괴와, atherosclerosis의 발달을 저해하)부양을 방해하는 니코틴산 수용체 가족의 일원이다.blo의 이온od vessel) 및 니아신 유도 [13]플러싱의 원인이 됩니다.
5-oxo-ETE
HCA의2 마우스 오솔로그인 Niacr1은 5-HEE 계열의 멤버인 5-oxo-ETE가 스테로이드제닉 급성 조절단백질 mRNA, 스테로이드제닉 급성 조절단백질 및 그에 따라 배양된 마우스 MA-10 레이디지세포에서 [14]프로게론의 생성을 촉진하는 능력을 중재하는 것이 제안되었다.인간의 조직은 OXER1 G 단백질 결합 수용체를 통해 5-oxo-ETE 및 기타 5-HETE족에 반응한다.다른 5-HETE 계열에 대한 레이디지 세포 반응에서 Niacr1의 역할, 5-HETE 계열에 대한 다른 마우스 세포 반응에서 Niacr1의 역할, 5-HETE 계열에 대한 인체 조직의 반응에서 HCA의2 역할은 결정되지 않았다.
임상적 의의
HCA는2 이상지질혈증 치료와 HDL 콜레스테롤 증가를 위해 널리 처방되는 약물인 [15]니아신의 중요한 생체 분자 표적이다. 그러나 치료적 사용은 플러싱에 의해 제한된다.HCA2 녹아웃 마우스에서는 지질과[16][17] 플러싱 모두에 대한 나이아신의 영향이 제거된다.또, 아레스틴 베타 1 녹아웃 마우스에서는, 지질 수식 효과를 유지하면서,[18] 니아신의 플러싱 효과를 큰폭으로 저감 한다.높은 용량에서, 니아신은 [19][20][21][22]HCA의2 활성화를 통해 뇌, 위장관, 피부 및 혈관 조직을 포함한 다양한 조직에서 현저한 항염증 효과를 일으킨다.니아신은 또한 NIACR1 [19]결합을 통해 신경 염증을 부분적으로 감소시키는 것으로 나타났다. 따라서 HCA는2 다발성 경화증 및 파킨슨병과 [19][22]같은 신경 면역 장애를 치료하기 위한 잠재적 치료 대상으로 확인되었다.
나이아신 치료 효과의 정확한 작용 메커니즘은 완전히 설명되지 않았지만, 부분적으로 세포 내 cAMP의 수치를 감소시켜 지방세포의 [23]지방 분해를 억제하는2 HCA의 활성화를 통해 작동하는 것으로 보인다.반면 플러싱 효과는 아레스틴 베타 [18]1에 의해 매개되는 ERK 1/2 MAP[24] 키나제의 HCA2 활성화에 기인한다.MAP 키나제의 활성화는 차례로 [25]피부의 랑게르한스 세포에서 프로스타글란딘 D2의 방출을 일으킨다.
NIACR1은 많은 세포 [26][27]유형에서 베타-히드록시낙산염의 항염증 효과에 필수적이지만, 대식세포에서 베타-히드록시낙산염에 의한 NLRP3 염증 억제는 NIACR1과는 무관하다.[28]
리간드
HCA의2 완전한 작용제는 다음을 포함한다.
레퍼런스
- ^ a b c GRCh38: 앙상블 릴리즈 89: ENSG00000182782 - 앙상블, 2017년 5월
- ^ a b c GRCm38: 앙상블 릴리즈 89: ENSMUSG000045502 - 앙상블, 2017년 5월
- ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
- ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
- ^ Offermanns S, Colletti SL, Lovenberg TW, Semple G, Wise A, IJzerman AP (June 2011). "International Union of Basic and Clinical Pharmacology. LXXXII: Nomenclature and Classification of Hydroxy-carboxylic Acid Receptors (GPR81, GPR109A, and GPR109B)". Pharmacological Reviews. 63 (2): 269–90. doi:10.1124/pr.110.003301. PMID 21454438.
- ^ Takeda S, Kadowaki S, Haga T, Takaesu H, Mitaku S (June 2002). "Identification of G protein-coupled receptor genes from the human genome sequence". FEBS Letters. 520 (1–3): 97–101. doi:10.1016/S0014-5793(02)02775-8. PMID 12044878. S2CID 7116392.
- ^ "Entrez Gene: GPR109A G protein-coupled receptor 109A".
- ^ a b c Wise A, Foord SM, Fraser NJ, Barnes AA, Elshourbagy N, Eilert M, Ignar DM, Murdock PR, Steplewski K, Green A, Brown AJ, Dowell SJ, Szekeres PG, Hassall DG, Marshall FH, Wilson S, Pike NB (March 2003). "Molecular identification of high and low affinity receptors for nicotinic acid". The Journal of Biological Chemistry. 278 (11): 9869–74. doi:10.1074/jbc.M210695200. PMID 12522134.
- ^ a b c Soga T, Kamohara M, Takasaki J, Matsumoto S, Saito T, Ohishi T, Hiyama H, Matsuo A, Matsushime H, Furuichi K (March 2003). "Molecular identification of nicotinic acid receptor". Biochemical and Biophysical Research Communications. 303 (1): 364–9. doi:10.1016/S0006-291X(03)00342-5. PMID 12646212.
- ^ a b c d e Offermanns S, Colletti SL, Lovenberg TW, Semple G, Wise A, IJzerman AP (June 2011). "International Union of Basic and Clinical Pharmacology. LXXXII: Nomenclature and Classification of Hydroxy-carboxylic Acid Receptors (GPR81, GPR109A, and GPR109B)". Pharmacological Reviews. 63 (2): 269–90. doi:10.1124/pr.110.003301. PMID 21454438.
- ^ a b c d e S Offermanns, SL Colletti, AP IJzerman, TW Lovenberg, G Semple, A Wise, MG Waters. "Hydroxycarboxylic acid receptors". IUPHAR/BPS Guide to Pharmacology. International Union of Basic and Clinical Pharmacology. Retrieved 13 July 2018.
{{cite web}}
: CS1 maint: 여러 이름: 작성자 목록(링크) - ^ "HCA2 receptor". International Union of Basic and Clinical Pharmacology. Retrieved 24 March 2016.
- ^ "HCA2 receptor". International Union of Basic and Clinical Pharmacology. Retrieved 24 March 2016.
- ^ Cooke M, Di Cónsoli H, Maloberti P, Cornejo Maciel F (May 2013). "Expression and function of OXE receptor, an eicosanoid receptor, in steroidogenic cells". Molecular and Cellular Endocrinology. 371 (1–2): 71–8. doi:10.1016/j.mce.2012.11.003. PMID 23159987. S2CID 8520991.
- ^ Pike NB (December 2005). "Flushing out the role of GPR109A (HM74A) in the clinical efficacy of nicotinic acid". The Journal of Clinical Investigation. 115 (12): 3400–3. doi:10.1172/JCI27160. PMC 1297267. PMID 16322787.
- ^ Tunaru S, Kero J, Schaub A, Wufka C, Blaukat A, Pfeffer K, Offermanns S (March 2003). "PUMA-G and HM74 are receptors for nicotinic acid and mediate its anti-lipolytic effect". Nature Medicine. 9 (3): 352–5. doi:10.1038/nm824. PMID 12563315. S2CID 20451806.
- ^ Benyó Z, Gille A, Kero J, Csiky M, Suchánková MC, Nüsing RM, Moers A, Pfeffer K, Offermanns S (December 2005). "GPR109A (PUMA-G/HM74A) mediates nicotinic acid-induced flushing". The Journal of Clinical Investigation. 115 (12): 3634–40. doi:10.1172/JCI23626. PMC 1297235. PMID 16322797.
- ^ a b Walters RW, Shukla AK, Kovacs JJ, Violin JD, DeWire SM, Lam CM, Chen JR, Muehlbauer MJ, Whalen EJ, Lefkowitz RJ (May 2009). "beta-Arrestin1 mediates nicotinic acid-induced flushing, but not its antilipolytic effect, in mice". The Journal of Clinical Investigation. 119 (5): 1312–21. doi:10.1172/JCI36806. PMC 2673863. PMID 19349687.
- ^ a b c Offermanns S, Schwaninger M (April 2015). "Nutritional or pharmacological activation of HCA(2) ameliorates neuroinflammation". Trends in Molecular Medicine. 21 (4): 245–55. doi:10.1016/j.molmed.2015.02.002. PMID 25766751.
Neuroinflammatory cells express HCA2, a receptor for the endogenous neuroprotective ketone body β-hydroxybutyrate (BHB) as well as for the drugs dimethyl fumarate (DMF) and nicotinic acid, which have established efficacy in the treatment of MS and experimental stroke, respectively. This review summarizes the evidence that HCA2 is involved in the therapeutic effects of DMF, nicotinic acid, and ketone bodies in reducing neuroinflammation.
- ^ Chai JT, Digby JE, Choudhury RP (May 2013). "GPR109A and vascular inflammation". Current Atherosclerosis Reports. 15 (5): 325. doi:10.1007/s11883-013-0325-9. PMC 3631117. PMID 23526298.
This interest is generated especially because of the continuing exploration of niacin's "pleiotropic" mechanisms of action and its potential in the "cross-talk" between metabolic and inflammatory pathways. As GPR109A's primary pharmacological ligand in clinical use, niacin has been used for over 50 years in the treatment of cardiovascular disease, mainly due to its favourable effects on plasma lipoproteins. However, it has become apparent that niacin also possesses lipoprotein-independent effects that influence inflammatory pathways mediated through GPR109A. In addition to its G-protein-mediated effects, recent evidence has emerged to support alternative GPR109A signalling via adaptive protein β-arrestins.
- ^ Graff EC, Fang H, Wanders D, Judd RL (February 2016). "Anti-inflammatory effects of the hydroxycarboxylic acid receptor 2". Metabolism. 65 (2): 102–13. doi:10.1016/j.metabol.2015.10.001. PMID 26773933.
HCA2 is highly expressed on immune cells, including macrophages, monocytes, neutrophils and dermal dendritic cells, among other cell types. ... Recent studies demonstrate that HCA2 mediates profound anti-inflammatory effects in a variety of tissues, indicating that HCA2 may be an important therapeutic target for treating inflammatory disease processes.
- ^ a b Wakade C, Chong R (December 2014). "A novel treatment target for Parkinson's disease". Journal of the Neurological Sciences. 347 (1–2): 34–8. doi:10.1016/j.jns.2014.10.024. PMID 25455298. S2CID 29760853.
GPR109A and its agonists are known to exert anti-inflammatory actions in the skin, gut and retina.
- ^ Zhang Y, Schmidt RJ, Foxworthy P, Emkey R, Oler JK, Large TH, Wang H, Su EW, Mosior MK, Eacho PI, Cao G (August 2005). "Niacin mediates lipolysis in adipose tissue through its G-protein coupled receptor HM74A". Biochemical and Biophysical Research Communications. 334 (2): 729–32. doi:10.1016/j.bbrc.2005.06.141. PMID 16018973.
- ^ Richman JG, Kanemitsu-Parks M, Gaidarov I, Cameron JS, Griffin P, Zheng H, Guerra NC, Cham L, Maciejewski-Lenoir D, Behan DP, Boatman D, Chen R, Skinner P, Ornelas P, Waters MG, Wright SD, Semple G, Connolly DT (June 2007). "Nicotinic acid receptor agonists differentially activate downstream effectors". The Journal of Biological Chemistry. 282 (25): 18028–36. doi:10.1074/jbc.M701866200. PMID 17452318.
- ^ Tang Y, Zhou L, Gunnet JW, Wines PG, Cryan EV, Demarest KT (June 2006). "Enhancement of arachidonic acid signaling pathway by nicotinic acid receptor HM74A". Biochemical and Biophysical Research Communications. 345 (1): 29–37. doi:10.1016/j.bbrc.2006.04.051. PMID 16674924.
- ^ Puchalska P, Crawford PA (2017). "Multi-dimensional Roles of Ketone Bodies in Fuel Metabolism, Signaling, and Therapeutics". Cell Metabolism. 25 (2): 262–284. doi:10.1016/j.cmet.2016.12.022. PMC 5313038. PMID 28178565.
- ^ Bradshaw PC, Seeds WA, Curtis WM (2020). "COVID-19: Proposing a Ketone-Based Metabolic Therapy as a Treatment to Blunt the Cytokine Storm". Oxidative Medicine and Cellular Longevity. 2020: 6401341. doi:10.1155/2020/6401341. PMC 7519203. PMID 33014275.
- ^ Yang H, Shan W, Wang Q (2019). "Ketone Bodies in Neurological Diseases: Focus on Neuroprotection and Underlying Mechanisms". Frontiers in Neurology. 10: 585. doi:10.3389/fneur.2019.00585. PMC 6581710. PMID 31244753.
- ^ Kasubuchi M, Hasegawa S, Hiramatsu T, Ichimura A, Kimura I (April 2015). "Dietary gut microbial metabolites, short-chain fatty acids, and host metabolic regulation". Nutrients. 7 (4): 2839–49. doi:10.3390/nu7042839. PMC 4425176. PMID 25875123.
Short-chain fatty acids (SCFAs) such as acetate, butyrate, and propionate, which are produced by gut microbial fermentation of dietary fiber, are recognized as essential host energy sources and act as signal transduction molecules via G-protein coupled receptors (FFAR2, FFAR3, OLFR78, GPR109A) and as epigenetic regulators of gene expression by the inhibition of histone deacetylase (HDAC). Recent evidence suggests that dietary fiber and the gut microbial-derived SCFAs exert multiple beneficial effects on the host energy metabolism not only by improving the intestinal environment, but also by directly affecting various host peripheral tissues.
- ^ Hoeppli RE, Wu D, Cook L, Levings MK (February 2015). "The environment of regulatory T cell biology: cytokines, metabolites, and the microbiome". Frontiers in Immunology. 6: 61. doi:10.3389/fimmu.2015.00061. PMC 4332351. PMID 25741338.
Specific species that have been recognized by their high levels of butyrate production include Faecalibacterium prausnitzii and the cluster IV and XIVa of genus Clostridium ... Administration of acetate, propionate, and butyrate in drinking water mimics the effect of Clostridium colonization in germ-free mice, resulting in an elevated Treg frequency in the colonic lamina propria and increased IL-10 production by these Tregs (180, 182). Of the three main SCFAs, butyrate has been found to be the most potent inducer of colonic Tregs. Mice fed a diet enriched in butyrylated starches have more colonic Tregs than those fed a diet containing propinylated or acetylated starches (181). Arpaia et al. tested an array of SCFAs purified from commensal bacteria and confirmed butyrate was the strongest SCFA-inducer of Tregs in vitro (180). Mechanistically, it has been proposed that butyrate, and possibly propionate, promote Tregs through inhibiting histone deacetylase (HDAC), causing increased acetylation of histone H3 in the Foxp3 CNS1 region, and thereby enhancing FOXP3 expression (180, 181). Short-chain fatty acids partially mediate their effects through G-protein coupled receptors (GPR), including GPR41, GPR43, and GPR109A. GPR41 and GPR43 are stimulated by all three major SCFAs (191), whereas GPR109A only interacts with butyrate (192).
그림 1: 미생물 유래 분자는 대장 트레그 분화를 촉진한다.