제복5폴리토프

Uniform 5-polytope
정규균일한 폴리토페어의 그래프.
5-simplex t0.svg
5와섹스
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
5-simplex t1.svg
수정 5-단순
CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
5-simplex t01.svg
잘린 5-심플렉스
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
5-simplex t02.svg
캔터링 5단순
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
5-simplex t03.svg
런케이티드 5-심플렉스
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
5-simplex t04.svg
스테로이티드 5심플렉스
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
5-cube t4.svg
5형식
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
5-cube t34.svg
잘린 5정맥
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
5-cube t3.svg
교정된 5정맥류
CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
5-cube t24.svg
5정음
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
5-cube t14.svg
런케이트 5정형
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
5-cube t02.svg
캔터키드 5큐브
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
5-cube t03.svg
런케이티드 5큐브
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
5-cube t04.svg
스테리커티드 5-큐브
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
5-cube t0.svg
5시 15분
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
5-cube t01.svg
잘린 5-큐브
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
5-cube t1.svg
수정 5-큐브
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
5-demicube t0 D5.svg
5데미큐브
CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
5-demicube t01 D5.svg
잘린 5데미큐브
CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
5-demicube t02 D5.svg
5데미큐브
CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
5-demicube t03 D5.svg
런케이티드 5데미큐브
CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png

기하학에서 균일5폴리토프는 5차원 균일한 폴리토프다. 정의에 따르면, 균일한 5-폴리토프는 정점 변환이며 균일한 4-폴리토프 으로 구성된다.

볼록한 제복 5폴리토프의 전체 세트는 결정되지 않았지만, 작은 대칭군에서 와이토프 건설로 많은 것을 만들 수 있다. 이러한 시공 작업은 Coxeter 다이어그램의 링 순열로 표현된다.

발견의 역사

  • 일반 폴리탑: (콘벡스 면)
    • 1852: 루트비히 슐레플리는 그의 원고인 Theory der Vielfachen Kontinuitett을 통해 5개 이상의 차원에 정확히 3개의 규칙적인 폴리토페가 있다는 것을 증명했다.
  • 볼록 반정형 다상체: (Coxeter의 균일한 범주 이전의 다양한 정의)
  • 볼록한 균일한 폴리탑:
    • 1940-1988: 이 검색은 H.S.M. Coxeter가 출판한 정규준정규 폴리토페스 I, II, III에서 체계적으로 확장되었다.
    • 1966: Norman W. Johnson은 박사과정을 마쳤다. Coxeter의 논문, University of Toronto University, University of University of Universal Polytopes and Honeycombs 이론
  • 비콘벡스 균일한 폴리토페즈:
    • 1966: Johnson은 논문에서 5공간에 두 개의 비콘벡스 제복 반항을 기술하고 있다.[2]
    • 2000-2021: Jonathan Bowers는 현재 1292개의 알려진 균일 5-폴리토페(콘벡스 및 비콘벡스, 프리즘 제외)를 가진 다른 비콘벡스 유니폼 5-폴리토페를 검색한다. 그 목록은 완전하다고 증명되지 않았다.[3]

일반 5폴리톱

일반 5폴리탑은 각 면 주위에 s {p,q,r,s}개의 4폴리탑 이 있는 슐레플리 기호 {p,q,r,s}로 나타낼 수 있다. 그러한 규칙적인 폴리탑이 정확히 세 개 있는데, 모두 볼록한 것이다.

5차원 이상에 비콘벡스 일반 폴리토페스는 없다.

볼록 균일 5폴리톱

수학의 미해결 문제:

제복 5폴리탑의 전체 세트는?

104개의 알려진 볼록한 제복 5폴리탑과 다수의 무한가족의 듀오프라즘 프리즘, 그리고 폴리곤-폴리헤드론 듀오프라임이 있다. 대항정신병 프리즘을 제외한 모든 것은 콕시터 그룹과 함께 생성된 반사 대칭인 와이토프 구조에 기초한다.[citation needed]

4차원 균일한 5폴리탑의 대칭

5-심플렉스(simplex)는5 A과에 속하는 정규형식이다. 5관 5관은 B과에5 속하는 정규형식이다. D5 계열의 분기 그래프에는 5정맥5정맥번갈아 나타나는 5정맥이 들어 있다.

각 반사 균일 5 폴리토프는 Coxeter 다이어그램에서 노드 순열 주변의 링으로 대표되는 Wythoff 구성에 의해 5차원 반사 지점 그룹으로 구성될 수 있다. 미러 하이퍼플레인은 컬러 노드에서 볼 수 있듯이 짝수 분지로 구분하여 그룹화할 수 있다. [a,b,b,a] 형태의 대칭 그룹은 [3,3,3,3,3]과 같이 대칭이 확장되어 대칭 순서를 두 배로 한다. 대칭 링이 있는 이 그룹의 균일한 폴리토프는 이 확장된 대칭을 포함한다.

주어진 균일한 폴리토프에서 주어진 색상의 모든 거울이 비링(비활성)되어 있는 경우, 모든 비활성 미러를 제거하여 더 낮은 대칭 구조를 갖게 된다. 특정 색상의 모든 노드가 링(활성)된 경우, 교류 연산은 "빈" 원형 노드"로 보이는 치랄 대칭으로 새로운 5-폴리토프를 생성할 수 있지만, 일반적으로 기하학적 구조를 조정하여 균일한 솔루션을 만들 수 없다.

콕시터 다이어그램은 도표 내 패밀리 간 및 상위 대칭에 대응한다. 각 행에서 동일한 색상의 노드는 동일한 미러를 나타낸다. 블랙 노드는 통신에서 활성화되지 않는다.
기본가족[4]
그룹
심볼
주문 콕시터
도표를 찍다
브래킷
표기법
정류자
부분군
콕시터
번호를 붙이다

(h)
반사
m=5/2시간[5]
A을5 720 CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png CDel node c1.pngCDel 3.pngCDel node c1.pngCDel 3.pngCDel node c1.pngCDel 3.pngCDel node c1.pngCDel 3.pngCDel node c1.png [3,3,3,3] [3,3,3,3]+ 6 15 CDel 노드 c1.png
D5 1920 CDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png CDel nodeab c1.pngCDel split2.pngCDel node c1.pngCDel 3.pngCDel node c1.pngCDel 3.pngCDel node c1.png [3,3,31,1] [3,3,31,1]+ 8 20 CDel 노드 c1.png
B5 3840 CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png CDel node c2.pngCDel 4.pngCDel node c1.pngCDel 3.pngCDel node c1.pngCDel 3.pngCDel node c1.pngCDel 3.pngCDel node c1.png [4,3,3,3] 10 5 CDel 노드 c2.png 20 CDel 노드 c1.png
균일 프리즘

비prismistic 유니폼 4-폴리토페스를 기반으로 한 폴리토페스의 유한범주형 균일 프리즘 계열이 5개 있다. 균일한 듀오프라임 {p}×{q}×{{}×{}}}의 프리즘을 바탕으로 5폴리탑의 무한가족이 하나 있다.

콕시터
무리를 짓다
주문 콕시터
도표를 만들다
콕시터
표기법
정류자
부분군
반사
A4A1 120 CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node.png CDel node c1.pngCDel 3.pngCDel node c1.pngCDel 3.pngCDel node c1.pngCDel 3.pngCDel node c1.pngCDel 2.pngCDel node c5.png [3,3,3,2] = [3,3,3]×[ ] [3,3,3]+ 10 CDel 노드 c1.png 1 CDel 노드 c5.png
D4A1 384 CDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node.png CDel nodeab c1.pngCDel split2.pngCDel node c1.pngCDel 3.pngCDel node c1.pngCDel 2.pngCDel node c5.png [31,1,1,2] = [31,1,1]×[ ] [31,1,1]+ 12 CDel 노드 c1.png 1 CDel 노드 c5.png
B4A1 768 CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node.png CDel node c2.pngCDel 4.pngCDel node c1.pngCDel 3.pngCDel node c1.pngCDel 3.pngCDel node c1.pngCDel 2.pngCDel node c5.png [4,3,3,2] = [4,3,3]×[ ] 4 CDel 노드 c2.png 12 CDel 노드 c1.png 1 CDel 노드 c5.png
F4A1 2304 CDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node.png CDel node c2.pngCDel 3.pngCDel node c2.pngCDel 4.pngCDel node c1.pngCDel 3.pngCDel node c1.pngCDel 2.pngCDel node c5.png [3,4,3,2] = [3,4,3]×[ ] [3+,4,3+] 12 CDel 노드 c2.png 12 CDel 노드 c1.png 1 CDel 노드 c5.png
H4A1 28800 CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node.png CDel node c1.pngCDel 5.pngCDel node c1.pngCDel 3.pngCDel node c1.pngCDel 3.pngCDel node c1.pngCDel 2.pngCDel node c5.png [5,3,3,2] = [3,4,3]×[ ] [5,3,3]+ 60 CDel 노드 c1.png 1 CDel 노드 c5.png
2중격(이벤의 경우 2p 및 2q 사용)
I2(p)I2(q)A1 8pq CDel node.pngCDel p.pngCDel node.pngCDel 2.pngCDel node.pngCDel q.pngCDel node.png CDel node c2.pngCDel p.pngCDel node c2.pngCDel 2.pngCDel node c1.pngCDel q.pngCDel node c1.pngCDel 2.pngCDel node c5.png [p,2,q,2] = [p]×[q]×[ ] [p+,2,q+] p CDel node c2.png q CDel node c1.png 1 CDel 노드 c5.png
I2(2p)I2(q)A1 16pq CDel node.pngCDel 2x.pngCDel p.pngCDel node.pngCDel 2.pngCDel node.pngCDel q.pngCDel node.png CDel node c3.pngCDel 2x.pngCDel p.pngCDel node c2.pngCDel 2.pngCDel node c1.pngCDel q.pngCDel node c1.pngCDel 2.pngCDel node c5.png [2p,2,q,2] = [2p]×[q]×[ ] p CDel 노드 c3.png p CDel node c2.png q CDel node c1.png 1 CDel 노드 c5.png
I2(2p)I2(2q)A1 32pq CDel node.pngCDel 2x.pngCDel p.pngCDel node.pngCDel 2.pngCDel node.pngCDel 2x.pngCDel q.pngCDel node.png CDel node c3.pngCDel 2x.pngCDel p.pngCDel node c2.pngCDel 2.pngCDel node c1.pngCDel 2x.pngCDel q.pngCDel node c4.pngCDel 2.pngCDel node c5.png [2p,2,2q,2] = [2p]×[2q]×[ ] p CDel node c3.png p CDel node c2.png q CDel node c1.png q CDel node c4.png 1 CDel 노드 c5.png
유니폼 듀오프리스

균일한 폴리헤드라 및 일반 폴리곤카르테시아 제품을 기반으로 하는 폴리토페스의 범주형 균일 2중주의 3개 제품군({q,r}×{p})이 있다.

콕시터
무리를 짓다
주문 콕시터
도표를 만들다
콕시터
표기법
정류자
부분군
반사
프리즘 그룹(짝수에는 2p 사용)
A3I2(p) 48p CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node.pngCDel p.pngCDel node.png CDel node c1.pngCDel 3.pngCDel node c1.pngCDel 3.pngCDel node c1.pngCDel 2.pngCDel node c3.pngCDel p.pngCDel node c3.png [3,3,2,p] = [3,3]×[p] [(3,3)+,2,p+] 6 CDel 노드 c1.png p CDel node c3.png
A3I2(2p) 96p CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node.pngCDel 2x.pngCDel p.pngCDel node.png CDel node c1.pngCDel 3.pngCDel node c1.pngCDel 3.pngCDel node c1.pngCDel 2.pngCDel node c3.pngCDel 2x.pngCDel p.pngCDel node c4.png [3,3,2,2p] = [3,3]×[2p] 6 CDel 노드 c1.png p CDel node c3.png p CDel node c4.png
B3I2(p) 96p CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node.pngCDel p.pngCDel node.png CDel node c2.pngCDel 4.pngCDel node c1.pngCDel 3.pngCDel node c1.pngCDel 2.pngCDel node c3.pngCDel p.pngCDel node c3.png [4,3,2,p] = [4,3]×[p] 3 CDel 노드 c2.png 6CDel 노드 c1.png p CDel node c3.png
B3I2(2p) 192p CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node.pngCDel 2x.pngCDel p.pngCDel node.png CDel node c2.pngCDel 4.pngCDel node c1.pngCDel 3.pngCDel node c1.pngCDel 2.pngCDel node c3.pngCDel 2x.pngCDel p.pngCDel node c4.png [4,3,2,2p] = [4,3]×[2p] 3 CDel 노드 c2.png 6 CDel 노드 c1.png p CDel node c3.png p CDel node c4.png
H3I2(p) 240p CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node.pngCDel p.pngCDel node.png CDel node c1.pngCDel 5.pngCDel node c1.pngCDel 3.pngCDel node c1.pngCDel 2.pngCDel node c3.pngCDel p.pngCDel node c3.png [5,3,2,p] = [5,3]×[p] [(5,3)+,2,p+] 15 CDel 노드 c1.png p CDel node c3.png
H3I2(2p) 480p CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node.pngCDel 2x.pngCDel p.pngCDel node.png CDel node c1.pngCDel 5.pngCDel node c1.pngCDel 3.pngCDel node c1.pngCDel 2.pngCDel node c3.pngCDel 2x.pngCDel p.pngCDel node c4.png [5,3,2,2p] = [5,3]×[2p] 15 CDel 노드 c1.png p CDel node c3.png p CDel node c4.png

볼록형 균일 5폴리톱 열거

  • 심플렉스 패밀리: A5 [34]
    • 19개의 제복 5-제복 상의
  • 하이퍼큐브/정맥류 가족 : BC5 [4,33]
    • 31개의 제복 5-제복 상의
  • Demihypercube D5/E5 제품군: [32,1,1]
    • 23개의 제복 5-제곱 상단(8개 고유)
  • 프리즘 및 듀오프리스:

그 결과: 19+31+8+45+1=104가 된다.

이외에도 다음과 같은 것들이 있다.

  • 듀오프리즘 프리즘 계열에 기초한 5-폴리토프 건축물은 무한히 많다: [p]×[q]×[ ]].
  • 2중주파 가문에 기초한 5중주형 구조물은 무한히 많다: [3,3]×[p], [4,3]×[p], [5,3]×[p].

A가족5

1개 이상의 링이 있는 Coxeter 다이어그램의 모든 순열을 기준으로 한 19개의 양식이 있다.(16+4-1 사례)

그것들은 와이토프 건설 사업장의 노먼 존슨이 정기적인 5-심플렉스 (헥사테론)로 명명했다.

A5 계열은 순서 720 (6 요인)의 대칭을 가지고 있다. 대칭 링이 있는 Coxeter 다이어그램의 19개 그림 중 7개가 대칭이 2배인 1440번 순서다.

5-단순 대칭의 균일한 5-폴리탑 좌표는 6-공간에서 단순 정수의 순열로 생성될 수 있으며, 모두 정상 벡터(1,1,1,1,1,1,1)가 있는 하이퍼플레인에서 생성된다.

# 기준점 존슨 명명 시스템
Bowers 이름 및 (acronym)
콕시터 다이어그램
k-면 요소 계수 꼭지점
형상을 나타내다
위치별 면 계수: [3,3,3,3]
4 3 2 1 0 CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
[3,3,3]
(6)
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node.png
[3,3,2]
(15)
CDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node.pngCDel 3.pngCDel node.png
[3,2,3]
(20)
CDel node.pngCDel 2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
[2,3,3]
(15)
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
[3,3,3]
(6)
1 (0,0,0,0,0,0,1) 또는 (0,1,1,1) 5와섹스
헥사테론(hix)
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
6 15 20 15 6 5-simplex verf.png
{3,3,3}
(5)
4-simplex t0.svg
{3,3,3}
- - - -
2 (0,0,0,0,1,1) 또는 (0,0,1,1) 수정 5-단순
정류된 육각형(릭스)
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
12 45 80 60 15 Rectified 5-simplex verf.png
t{3,3}×{ }
(4)
4-simplex t1.svg
r{3,3,3}
- - - (2)
4-simplex t0.svg
{3,3,3}
3 (0,0,0,0,1,2) 또는 (0,1,2,2,2) 잘린 5-심플렉스
잘린 육각형(tix)
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
12 45 80 75 30 Truncated 5-simplex verf.png
테트라피르
(4)
4-simplex t01.svg
t{3,3,3}
- - - (1)
4-simplex t0.svg
{3,3,3}
4 (0,0,0,1,1,2,2) 또는 (0,1,1,2,2) 캔터링 5단순
소형 고무 육각형(상어)
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
27 135 290 240 60 Cantellated hexateron verf.png
프리즘을 이용한
(3)
4-simplex t02.svg
rr{3,3}
- - (1)
1-simplex t0.svg×3-simplex t0.svg
{ }×{3,3}
(1)
4-simplex t1.svg
r{3,3,3}
5 (0,0,0,1,2,2) 또는 (0,0,1,2,2) 5-단순 비트런드
비트 처리된 16진수(bittix)
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
12 60 140 150 60 Bitruncated 5-simplex verf.png (3)
4-simplex t12.svg
2t{3,3}
- - - (2)
4-simplex t01.svg
t{3,3,3}
6 (0,0,0,1,2,3) 또는 (0,1,2,3,3) 캔트런치 5-심플렉스
대합성 육각체(garx)
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
27 135 290 300 120 Canitruncated 5-simplex verf.png 4-simplex t012.svg
tr{3,3}
- - 1-simplex t0.svg×3-simplex t0.svg
{ }×{3,3}
4-simplex t01.svg
t{3,3,3}
7 (0,0,1,1,2,2) 또는 (0,1,1,1,2,2) 런케이티드 5-심플렉스
작은 프리즘으로 된 육각형(스픽스)
CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
47 255 420 270 60 Runcinated 5-simplex verf.png (2)
4-simplex t03.svg
t0,3{3,3,3}
- (3)
3-3 duoprism ortho-skew.png
{3}×{3}
(3)
1-simplex t0.svg×3-simplex t1.svg
{ }×r{3,3}
(1)
4-simplex t1.svg
r{3,3,3}
8 (0,0,1,1,2,3) 또는 (0,1,2,3,3) 런시트드림 5단순수
프리즘(primottrunculated hexateron, pattix)
CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
47 315 720 630 180 Runcitruncated 5-simplex verf.png 4-simplex t013.svg
t0,1,3{3,3,3}
- 2-simplex t0.svg×2-simplex t01.svg
{6}×{3}
1-simplex t0.svg×3-simplex t1.svg
{ }×r{3,3}
4-simplex t02.svg
rr{3,3}
9 (0,0,1,2,2,3) 또는 (0,1,1,2,3,3) 런시컨텔링 5단플렉스
프리즘atorhombated 헥사테론(pirx)
CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
47 255 570 540 180 Runcicantellated 5-simplex verf.png 4-simplex t03.svg
t0,1,3{3,3,3}
- 3-3 duoprism ortho-skew.png
{3}×{3}
1-simplex t0.svg×4-simplex t01.svg
{ }×t{3,3}
4-simplex t12.svg
2t{3,3}
10 (0,0,1,2,3,4) 또는 (0,1,2,3,4,4) 런시칸티트런치드5-심플렉스
대프리즘 육각체(gippix)
CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
47 315 810 900 360 Runcicantitruncated 5-simplex verf.png
인라인 5-셀
4-simplex t0123.svg
t0,1,2,3{3,3,3}
- 2-simplex t0.svg×2-simplex t01.svg
{3}×{6}
1-simplex t0.svg×4-simplex t01.svg
{ }×t{3,3}
4-simplex t02.svg
rr{3,3}
11 (0,1,1,2,3) 또는 (0,1,2,2,3) 스테리트런드 5-심플렉스
세포분열 육각체(카픽스)
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
62 330 570 420 120 Steritruncated 5-simplex verf.png 4-simplex t01.svg
t{3,3,3}
1-simplex t0.svg×4-simplex t01.svg
{ }×t{3,3}
2-simplex t0.svg×2-simplex t01.svg
{3}×{6}
1-simplex t0.svg×3-simplex t0.svg
{ }×{3,3}
4-simplex t03.svg
t0,3{3,3,3}
12 (0,1,2,3,4) 또는 (0,1,2,3,4) 스테리칸티트룬 5-심플렉스
세포호흡기결합헥사테론(cograxrax)
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
62 480 1140 1080 360 Stericanitruncated 5-simplex verf.png 4-simplex t012.svg
tr{3,3}
1-simplex t0.svg×3-simplex t012.svg
{ }×tr{3,3}
2-simplex t0.svg×2-simplex t01.svg
{3}×{6}
1-simplex t0.svg×3-simplex t02.svg
{}×r{3,3}
4-simplex t013.svg
t0,1,3{3,3,3}
# 기준점 존슨 명명 시스템
Bowers 이름 및 (acronym)
콕시터 다이어그램
k-면 요소 계수 꼭지점
형상을 나타내다
위치별 면 계수: [3,3,3,3]
4 3 2 1 0 CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
[3,3,3]
(6)
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node.png
[3,3,2]
(15)
CDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node.pngCDel 3.pngCDel node.png
[3,2,3]
(20)
CDel node.pngCDel 2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
[2,3,3]
(15)
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
[3,3,3]
(6)
13 (0,0,0,1,1,1) 양방향 5단순
도데카테론 (점)
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
12 60 120 90 20 Birectified hexateron verf.png
{3}×{3}
(3)
4-simplex t1.svg
r{3,3,3}
- - - (3)
4-simplex t1.svg
r{3,3,3}
14 (0,0,1,1,2,2) 바이칸텔레이트 5단플렉스
작은 버혼드 도데카테론 (sibridrid)
CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
32 180 420 360 90 Bicantellated 5-simplex verf.png (2)
4-simplex t02.svg
rr{3,3}
- (8)
3-3 duoprism ortho-skew.png
{3}×{3}
- (2)
4-simplex t02.svg
rr{3,3}
15 (0,0,1,2,3,3) 바이칸티트룬 5-단순
큰 버혼 도데카테론 ( (ridrid)
CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
32 180 420 450 180 Bicanitruncated 5-simplex verf.png 4-simplex t012.svg
tr{3,3}
- 3-3 duoprism ortho-skew.png
{3}×{3}
- 4-simplex t012.svg
tr{3,3}
16 (0,1,1,1,1,2) 스테로이티드 5심플렉스
소세포 도데카테론(scad)
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
62 180 210 120 30 Stericated hexateron verf.png
인라인.16
(1)
4-simplex t0.svg
{3,3,3}
(4)
1-simplex t0.svg×3-simplex t0.svg
{ }×{3,3}
(6)
3-3 duoprism ortho-skew.png
{3}×{3}
(4)
1-simplex t0.svg×3-simplex t0.svg
{ }×{3,3}
(1)
4-simplex t0.svg
{3,3,3}
17 (0,1,1,2,2,3) 스테리칸텔화 5단백질
소형 셀리혼합 도데카테론(카드)
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
62 420 900 720 180 Stericantellated 5-simplex verf.png 4-simplex t02.svg
rr{3,3}
1-simplex t0.svg×3-simplex t02.svg
{}×r{3,3}
3-3 duoprism ortho-skew.png
{3}×{3}
1-simplex t0.svg×3-simplex t02.svg
{}×r{3,3}
4-simplex t02.svg
rr{3,3}
18 (0,1,2,2,3,4) 스테리룬시티칼 5단백질
celliprismatotrunculated doddecateron (captid)
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
62 450 1110 1080 360 Steriruncitruncated 5-simplex verf.png 4-simplex t013.svg
t0,1,3{3,3,3}
1-simplex t0.svg×4-simplex t01.svg
{ }×t{3,3}
6-6 duoprism ortho-3.png
{6}×{6}
1-simplex t0.svg×4-simplex t01.svg
{ }×t{3,3}
4-simplex t013.svg
t0,1,3{3,3,3}
19 (0,1,2,3,4,5) 옴니트런드 5심플렉스
세포가 많은 도데카테론(고카드)
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
62 540 1560 1800 720 Omnitruncated 5-simplex verf.png
관개 {3,3,3}
(1)
4-simplex t0123.svg
t0,1,2,3{3,3,3}
(1)
1-simplex t0.svg×3-simplex t012.svg
{ }×tr{3,3}
(1)
6-6 duoprism ortho-3.png
{6}×{6}
(1)
1-simplex t0.svg×3-simplex t012.svg
{ }×tr{3,3}
(1)
4-simplex t0123.svg
t0,1,2,3{3,3,3}

B가족5

B5 계열은 순서 3840 (5!×25)의 대칭을 가지고 있다.

5 패밀리는 2-1=31 Wythoffian 유니폼 폴리토페스를 Coxeter 다이어그램의 하나 이상의 노드를 표시하여 생성한다.

단순성을 위해 각각 12개의 형태를 가진 두 개의 하위그룹과 두 개 모두에 동일하게 속하는 7개의 "중간" 형태로 나뉜다.

5관 5폴리탑 계열은 아래 표에 열거된 기준점의 볼록한 선체에 의해 주어지며, 좌표와 표지의 모든 순열은 다음과 같다. 각 기준점은 구별되는 균일한 5폴리토프를 생성한다. 모든 좌표는 가장자리 길이 2의 균일한 5 폴리 상단과 일치한다.

# 기준점 이름
콕시터 다이어그램
요소 개수 꼭지점
형상을 나타내다
위치별 면 개수: [4,3,3,3]
4 3 2 1 0 CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
[4,3,3]
(10)
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node.png
[4,3,2]
(40)
CDel node.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node.pngCDel 3.pngCDel node.png
[4,2,3]
(80)
CDel node.pngCDel 2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
[2,3,3]
(80)
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
[3,3,3]
(32)
20 (0,0,0,0,1)√2 5정맥(tactac)
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
32 80 80 40 10 Pentacross verf.png
{3,3,4}
Schlegel wireframe 5-cell.png
{3,3,3}
- - - -
21 (0,0,0,1,1)√2 수정 5정맥(랫드)
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
42 240 400 240 40 Rectified pentacross verf.png
{ }×{3,4}
Schlegel wireframe 16-cell.png

{3,3,4}
- - - Schlegel half-solid rectified 5-cell.png
r{3,3,3}
22 (0,0,0,1,2)√2 잘린 5정형(토트)
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
42 240 400 280 80 Truncated pentacross.png
(Octah.pyr)
Schlegel half-solid truncated pentachoron.png
t{3,3,3}
Schlegel wireframe 5-cell.png
{3,3,3}
- - -
23 (0,0,1,1,1)√2 양방향 5큐브(nit)
(양방향 5정형)
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
42 280 640 480 80 Birectified penteract verf.png
{4}×{3}
Schlegel half-solid rectified 16-cell.png
r{3,3,4}
- - - Schlegel half-solid rectified 5-cell.png
r{3,3,3}
24 (0,0,1,1,2)√2 5정맥류(사트)
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
82 640 1520 1200 240 Cantellated pentacross verf.png
프리즘-웨지
r{3,3,4} { }×{3,4} - - Schlegel half-solid cantellated 5-cell.png
rr{3,3}
25 (0,0,1,2,2)√2 비트런드 5정형(비트)
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
42 280 720 720 240 Bitruncated pentacross verf.png t{3,3,4} - - - Schlegel half-solid bitruncated 5-cell.png
2t{3,3}
26 (0,0,1,2,3)√2 캔트런치 5정형(가트)
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
82 640 1520 1440 480 Canitruncated 5-orthoplex verf.png rr{3,4} { }×r{3,4} 6-4 duoprism.png
{6}×{4}
- Schlegel half-solid runcitruncated 5-cell.png
t0,1,3{3,3,3}
27 (0,1,1,1,1)√2 수정 5-큐브(린)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
42 200 400 320 80 Rectified 5-cube verf.png
{3,3}×{ }
Schlegel half-solid rectified 8-cell.png
r{4,3,3}
- - - Schlegel wireframe 5-cell.png
{3,3,3}
28 (0,1,1,1,2)√2 런케이티드 5정형(스팟)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
162 1200 2160 1440 320 Runcinated pentacross verf.png r{4,3,3} - 3-4 duoprism.png
{3}×{4}
Schlegel half-solid runcinated 5-cell.png
t0,3{3,3,3}
29 (0,1,1,2,2)√2 바이칸텔레이트 5큐브(시번트)
(Bicantellated 5정형)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
122 840 2160 1920 480 Bicantellated penteract verf.png Schlegel half-solid cantellated 8-cell.png
rr{4,3,3}
- 3-4 duoprism.png
{4}×{3}
- Schlegel half-solid cantellated 5-cell.png
rr{3,3}
30 (0,1,1,2,3)√2 5정형(특권)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
162 1440 3680 3360 960 Runcitruncated 5-orthoplex verf.png rr{3,4} { }×r{3,4} 6-4 duoprism.png
{6}×{4}
- Schlegel half-solid runcitruncated 5-cell.png
t0,1,3{3,3,3}
31 (0,1,2,2,2)√2 5-큐브 비트런드(탄)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
42 280 720 800 320 Bitruncated penteract verf.png Schlegel half-solid bitruncated 8-cell.png
2t{4,3,3}
- - - Schlegel half-solid truncated pentachoron.png
t{3,3,3}
32 (0,1,2,2,3)√2 런시컨텔링 5정형(퍼트)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
162 1200 2960 2880 960 Runcicantellated 5-orthoplex verf.png { }×t{3,4} 2t{3,4} 3-4 duoprism.png
{3}×{4}
- Schlegel half-solid runcitruncated 5-cell.png
t0,1,3{3,3,3}
33 (0,1,2,3,3)√2 바이칸티트룬 5큐브(기브란트)
(바이칸티트룬 5정맥)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
122 840 2160 2400 960 Bicantellated penteract verf.png Schlegel half-solid cantellated 8-cell.png
rr{4,3,3}
- 3-4 duoprism.png
{4}×{3}
- Schlegel half-solid cantellated 5-cell.png
rr{3,3}
34 (0,1,2,3,4)√2 런시칸티트룬 5정맥(지핏)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
162 1440 4160 4800 1920 Runcicantitruncated 5-orthoplex verf.png tr{3,4} { }×t{3,4} 6-4 duoprism.png
{6}×{4}
- Schlegel half-solid omnitruncated 5-cell.png
t0,1,2,3{3,3,3}
35 (1,1,1,1,1) 5인치(뱀)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
10 40 80 80 32 5-cube verf.png
{3,3,3}
Schlegel wireframe 8-cell.png
{4,3,3}
- - - -
36 (1,1,1,1,1)
+ (0,0,0,0,1)√2
스테리커티드 5큐브(사각형
(긴장 5정형)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
242 800 1040 640 160 Stericated penteract verf.png
테트르.antiprm
Schlegel wireframe 8-cell.png
{4,3,3}
Schlegel wireframe 8-cell.png
{4,3}×{ }
3-4 duoprism.png
{4}×{3}
Tetrahedral prism.png
{ }×{3,3}
Schlegel wireframe 5-cell.png
{3,3,3}
37 (1,1,1,1,1)
+ (0,0,0,1,1)√2
런케이티드 5큐브(스팬)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
202 1240 2160 1440 320 Runcinated penteract verf.png Schlegel half-solid runcinated 8-cell.png
t0,3{4,3,3}
- 3-4 duoprism.png
{4}×{3}
Octahedral prism.png
{ }×r{3,3}
Schlegel wireframe 5-cell.png
{3,3,3}
38 (1,1,1,1,1)
+ (0,0,0,1,2)√2
흉골절제 5정형(카핀)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
242 1520 2880 2240 640 Steritruncated 5-orthoplex verf.png t0,3{3,3,4} { }×{4,3} - - Schlegel half-solid truncated pentachoron.png
t{3,3,3}
39 (1,1,1,1,1)
+ (0,0,1,1,1)√2
캔터링된 5큐브(선배)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
122 680 1520 1280 320 Cantellated 5-cube vertf.png
프리즘-웨지
Schlegel half-solid cantellated 8-cell.png
rr{4,3,3}
- - Tetrahedral prism.png
{ }×{3,3}
Schlegel half-solid rectified 5-cell.png
r{3,3,3}
40 (1,1,1,1,1)
+ (0,0,1,1,2)√2
스테리칸텔레이트 5큐브(카니트)
(Stericantellated 5정형식)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
242 2080 4720 3840 960 Stericantellated 5-orthoplex verf.png Schlegel half-solid cantellated 8-cell.png
rr{4,3,3}
Rhombicuboctahedral prism.png
rr{4,3}×{ }
3-4 duoprism.png
{4}×{3}
Cuboctahedral prism.png
{}×r{3,3}
Schlegel half-solid cantellated 5-cell.png
rr{3,3}
41 (1,1,1,1,1)
+ (0,0,1,2,2)√2
런시컨텔링 5큐브(원리)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
202 1240 2960 2880 960 Runcicantellated 5-cube verf.png Schlegel half-solid runcitruncated 8-cell.png
t0,1,3{4,3,3}
- 3-4 duoprism.png
{4}×{3}
Truncated tetrahedral prism.png
{ }×t{3,3}
Schlegel half-solid bitruncated 5-cell.png
2t{3,3}
42 (1,1,1,1,1)
+ (0,0,1,2,3)√2
스테리칸티트룬 5정맥(코가르트)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
242 2320 5920 5760 1920 Stericanitruncated 5-orthoplex verf.png Truncated tetrahedral prism.png
{}×r{3,4}
Runcitruncated 16-cell.png
t0,1,3{3,3,4}
6-4 duoprism.png
{6}×{4}
Truncated tetrahedral prism.png
{ }×t{3,3}
Schlegel half-solid cantitruncated 5-cell.png
tr{3,3}
43 (1,1,1,1,1)
+ (0,1,1,1,1)√2
잘린 5-큐브(탄)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
42 200 400 400 160 Truncated 5-cube verf.png
테트라피르
Schlegel half-solid truncated tesseract.png
t{4,3,3}
- - - Schlegel wireframe 5-cell.png
{3,3,3}
44 (1,1,1,1,1)
+ (0,1,1,1,2)√2
흉골 절단 5-큐브(캡트)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
242 1600 2960 2240 640 Steritruncated 5-cube verf.png Schlegel half-solid truncated tesseract.png
t{4,3,3}
Truncated cubic prism.png
t{4,3}×{ }
8-3 duoprism.png
{8}×{3}
Tetrahedral prism.png
{ }×{3,3}
Schlegel half-solid runcinated 5-cell.png
t0,3{3,3,3}
45 (1,1,1,1,1)
+ (0,1,1,2,2)√2
런시터드 5큐브(패틴)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
202 1560 3760 3360 960 Runcitruncated 5-cube verf.png Schlegel half-solid runcitruncated 5-cell.png
t0,1,3{4,3,3}
{ }×t{4,3} 6-8 duoprism.png
{6}×{8}
{ }×t{3,3} t0,1,3{3,3,}]]
46 (1,1,1,1,1)
+ (0,1,1,2,3)√2
스테리룬시티 절단 5큐브(캡틴트)
(멸종 5정형)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
242 2160 5760 5760 1920 Steriruncitruncated 5-cube verf.png Schlegel half-solid runcitruncated 8-cell.png
t0,1,3{4,3,3}
Truncated cubic prism.png
t{4,3}×{ }
8-6 duoprism.png
{8}×{6}
Truncated tetrahedral prism.png
{ }×t{3,3}
Schlegel half-solid runcitruncated 5-cell.png
t0,1,3{3,3,3}
47 (1,1,1,1,1)
+ (0,1,2,2,2)√2
캔트런치 5-큐브(girn)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
122 680 1520 1600 640 Canitruncated 5-cube verf.png Schlegel half-solid cantitruncated 8-cell.png
tr{4,3,3}
- - Tetrahedral prism.png
{ }×{3,3}
Schlegel half-solid truncated pentachoron.png
t{3,3,3}
48 (1,1,1,1,1)
+ (0,1,2,2,3)√2
스테리칸티트룬 5-큐브(코그린)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
242 2400 6000 5760 1920 Stericanitruncated 5-cube verf.png Schlegel half-solid cantitruncated 8-cell.png
tr{4,3,3}
Truncated cuboctahedral prism.png
tr{4,3}×{ }
8-3 duoprism.png
{8}×{3}
Cuboctahedral prism.png
{ }×t0,2{3,3}
Schlegel half-solid runcitruncated 5-cell.png
t0,1,3{3,3,3}
49 (1,1,1,1,1)
+ (0,1,2,3,3)√2
런시칸티트룬 5-큐브(지핀)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
202 1560 4240 4800 1920 Runcicantitruncated 5-cube verf.png Schlegel half-solid omnitruncated 8-cell.png
t0,1,2,3{4,3,3}
- 8-3 duoprism.png
{8}×{3}
Truncated tetrahedral prism.png
{ }×t{3,3}
Schlegel half-solid cantitruncated 5-cell.png
tr{3,3}
50 (1,1,1,1,1)
+ (0,1,2,3,4)√2
옴니트룬드 5큐브(가크넷)
(5정맥경화)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
242 2640 8160 9600 3840 Omnitruncated 5-cube verf.png
관개 {3,3,3}
Schlegel half-solid omnitruncated 8-cell.png
tr{4,3}×{ }
Truncated cuboctahedral prism.png
tr{4,3}×{ }
8-6 duoprism.png
{8}×{6}
Truncated octahedral prism.png
{ }×tr{3,3}
Schlegel half-solid omnitruncated 5-cell.png
t0,1,2,3{3,3,3}

D가족5

D5 계열은 순서 1920 (54! x 2)의 대칭을 가지고 있다.

이 패밀리는 하나 이상의 링이 있는 D5 Coxeter 다이어그램3x8-1 순열부터 23개의 와이토피아 유니폼 다면체를 가지고 있다. 15(2x8-1)는 B5 패밀리에서 반복되며 8은 이 패밀리 특유의 것이다.

# Coxeter diagram
Schläfli symbol symbols
Johnson and Bowers names
Element counts Vertex
figure
Facets by location: CD B5 nodes.png [31,2,1]
4 3 2 1 0 CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
[3,3,3]
(16)
CDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.png
[31,1,1]
(10)
CDel nodes.pngCDel split2.pngCDel node.pngCDel 2.pngCDel node.png
[3,3]×[ ]
(40)
CDel node.pngCDel 2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node.png
[ ]×[3]×[ ]
(80)
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
[3,3,3]
(16)
51 CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
h{4,3,3,3}, 5-demicube
Hemipenteract (hin)
26 120 160 80 16 Demipenteract verf.png
t1{3,3,3}
{3,3,3} t0(111) - - -
52 CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
h2{4,3,3,3}, cantic 5-cube
Truncated hemipenteract (thin)
42 280 640 560 160 Truncated 5-demicube verf.png
53 CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
h3{4,3,3,3}, runcic 5-cube
Small rhombated hemipenteract (sirhin)
42 360 880 720 160
54 CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
h4{4,3,3,3}, steric 5-cube
Small prismated hemipenteract (siphin)
82 480 720 400 80
55 CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
h2,3{4,3,3,3}, runcicantic 5-cube
Great rhombated hemipenteract (girhin)
42 360 1040 1200 480
56 CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
h2,4{4,3,3,3}, stericantic 5-cube
Prismatotruncated hemipenteract (pithin)
82 720 1840 1680 480
57 CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
h3,4{4,3,3,3}, steriruncic 5-cube
Prismatorhombated hemipenteract (pirhin)
82 560 1280 1120 320
58 CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
h2,3,4{4,3,3,3}, steriruncicantic 5-cube
Great prismated hemipenteract (giphin)
82 720 2080 2400 960

Uniform prismatic forms

There are 5 finite categorical uniform prismatic families of polytopes based on the nonprismatic uniform 4-polytopes:

A4 × A1

This prismatic family has 9 forms:

The A1 x A4 family has symmetry of order 240 (2*5!).

# Coxeter diagram
and Schläfli
symbols
Name
Element counts
Facets Cells Faces Edges Vertices
59 CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.png = {3,3,3}×{ }
5-cell prism
7 20 30 25 10
60 CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.png = r{3,3,3}×{ }
Rectified 5-cell prism
12 50 90 70 20
61 CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.png = t{3,3,3}×{ }
Truncated 5-cell prism
12 50 100 100 40
62 CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.png = rr{3,3,3}×{ }
Cantellated 5-cell prism
22 120 250 210 60
63 CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 2.pngCDel node 1.png = t0,3{3,3,3}×{ }
Runcinated 5-cell prism
32 130 200 140 40
64 CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.png = 2t{3,3,3}×{ }
Bitruncated 5-cell prism
12 60 140 150 60
65 CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.png = tr{3,3,3}×{ }
Cantitruncated 5-cell prism
22 120 280 300 120
66 CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 2.pngCDel node 1.png = t0,1,3{3,3,3}×{ }
Runcitruncated 5-cell prism
32 180 390 360 120
67 CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 2.pngCDel node 1.png = t0,1,2,3{3,3,3}×{ }
Omnitruncated 5-cell prism
32 210 540 600 240

B4 × A1

This prismatic family has 16 forms. (Three are shared with [3,4,3]×[ ] family)

The A1×B4 family has symmetry of order 768 (254!).

# Coxeter diagram
and Schläfli
symbols
Name
Element counts
Facets Cells Faces Edges Vertices
[16] CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.png = {4,3,3}×{ }
Tesseractic prism
(Same as 5-cube)
10 40 80 80 32
68 CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.png = r{4,3,3}×{ }
Rectified tesseractic prism
26 136 272 224 64
69 CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.png = t{4,3,3}×{ }
Truncated tesseractic prism
26 136 304 320 128
70 CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.png = rr{4,3,3}×{ }
Cantellated tesseractic prism
58 360 784 672 192
71 CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 2.pngCDel node 1.png = t0,3{4,3,3}×{ }
Runcinated tesseractic prism
82 368 608 448 128
72 CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.png = 2t{4,3,3}×{ }
Bitruncated tesseractic prism
26 168 432 480 192
73 CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.png = tr{4,3,3}×{ }
Cantitruncated tesseractic prism
58 360 880 960 384
74 CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 2.pngCDel node 1.png = t0,1,3{4,3,3}×{ }
Runcitruncated tesseractic prism
82 528 1216 1152 384
75 CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 2.pngCDel node 1.png = t0,1,2,3{4,3,3}×{ }
Omnitruncated tesseractic prism
82 624 1696 1920 768
76 CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 2.pngCDel node 1.png = {3,3,4}×{ }
16-cell prism
18 64 88 56 16
77 CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.png = r{3,3,4}×{ }
Rectified 16-cell prism
(Same as 24-cell prism)
26 144 288 216 48
78 CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 2.pngCDel node 1.png = t{3,3,4}×{ }
Truncated 16-cell prism
26 144 312 288 96
79 CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 2.pngCDel node 1.png = rr{3,3,4}×{ }
Cantellated 16-cell prism
(Same as rectified 24-cell prism)
50 336 768 672 192
80 CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 2.pngCDel node 1.png = tr{3,3,4}×{ }
Cantitruncated 16-cell prism
(Same as truncated 24-cell prism)
50 336 864 960 384
81 CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 2.pngCDel node 1.png = t0,1,3{3,3,4}×{ }
Runcitruncated 16-cell prism
82 528 1216 1152 384
82 CDel node h.pngCDel 3.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node 1.png = sr{3,3,4}×{ }
snub 24-cell prism
146 768 1392 960 192

F4 × A1

This prismatic family has 10 forms.

The A1 x F4 family has symmetry of order 2304 (2*1152). Three polytopes 85, 86 and 89 (green background) have double symmetry [[3,4,3],2], order 4608. The last one, snub 24-cell prism, (blue background) has [3+,4,3,2] symmetry, order 1152.

# Coxeter diagram
and Schläfli
symbols
Name
Element counts
Facets Cells Faces Edges Vertices
[77] CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.png = {3,4,3}×{ }
24-cell prism
26 144 288 216 48
[79] CDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.png = r{3,4,3}×{ }
rectified 24-cell prism
50 336 768 672 192
[80] CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.png = t{3,4,3}×{ }
truncated 24-cell prism
50 336 864 960 384
83 CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.png = rr{3,4,3}×{ }
cantellated 24-cell prism
146 1008 2304 2016 576
84 CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 2.pngCDel node 1.png = t0,3{3,4,3}×{ }
runcinated 24-cell prism
242 1152 1920 1296 288
85 CDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.png = 2t{3,4,3}×{ }
bitruncated 24-cell prism
50 432 1248 1440 576
86 CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.png = tr{3,4,3}×{ }
cantitruncated 24-cell prism
146 1008 2592 2880 1152
87 CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 2.pngCDel node 1.png = t0,1,3{3,4,3}×{ }
runcitruncated 24-cell prism
242 1584 3648 3456 1152
88 CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 2.pngCDel node 1.png = t0,1,2,3{3,4,3}×{ }
omnitruncated 24-cell prism
242 1872 5088 5760 2304
[82] CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.png = s{3,4,3}×{ }
snub 24-cell prism
146 768 1392 960 192

H4 × A1

This prismatic family has 15 forms:

The A1 x H4 family has symmetry of order 28800 (2*14400).

# Coxeter diagram
and Schläfli
symbols
Name
Element counts
Facets Cells Faces Edges Vertices
89 CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.png = {5,3,3}×{ }
120-cell prism
122 960 2640 3000 1200
90 CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.png = r{5,3,3}×{ }
Rectified 120-cell prism
722 4560 9840 8400 2400
91 CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.png = t{5,3,3}×{ }
Truncated 120-cell prism
722 4560 11040 12000 4800
92 CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.png = rr{5,3,3}×{ }
Cantellated 120-cell prism
1922 12960 29040 25200 7200
93 CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 2.pngCDel node 1.png = t0,3{5,3,3}×{ }
Runcinated 120-cell prism
2642 12720 22080 16800 4800
94 CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.png = 2t{5,3,3}×{ }
Bitruncated 120-cell prism
722 5760 15840 18000 7200
95 CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.png = tr{5,3,3}×{ }
Cantitruncated 120-cell prism
1922 12960 32640 36000 14400
96 CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 2.pngCDel node 1.png = t0,1,3{5,3,3}×{ }
Runcitruncated 120-cell prism
2642 18720 44880 43200 14400
97 CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 2.pngCDel node 1.png = t0,1,2,3{5,3,3}×{ }
Omnitruncated 120-cell prism
2642 22320 62880 72000 28800
98 CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 2.pngCDel node 1.png = {3,3,5}×{ }
600-cell prism
602 2400 3120 1560 240
99 CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.png = r{3,3,5}×{ }
Rectified 600-cell prism
722 5040 10800 7920 1440
100 CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 2.pngCDel node 1.png = t{3,3,5}×{ }
Truncated 600-cell prism
722 5040 11520 10080 2880
101 CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 2.pngCDel node 1.png = rr{3,3,5}×{ }
Cantellated 600-cell prism
1442 11520 28080 25200 7200
102 CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 2.pngCDel node 1.png = tr{3,3,5}×{ }
Cantitruncated 600-cell prism
1442 11520 31680 36000 14400
103 CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 2.pngCDel node 1.png = t0,1,3{3,3,5}×{ }
Runcitruncated 600-cell prism
2642 18720 44880 43200 14400

Grand antiprism prism

The grand antiprism prism is the only known convex non-Wythoffian uniform 5-polytope. It has 200 vertices, 1100 edges, 1940 faces (40 pentagons, 500 squares, 1400 triangles), 1360 cells (600 tetrahedra, 40 pentagonal antiprisms, 700 triangular prisms, 20 pentagonal prisms), and 322 hypercells (2 grand antiprisms Grand antiprism.png, 20 pentagonal antiprism prisms Pentagonal antiprismatic prism.png, and 300 tetrahedral prisms Tetrahedral prism.png).

# Name Element counts
Facets Cells Faces Edges Vertices
104 grand antiprism prism
Gappip
322 1360 1940 1100 200

Notes on the Wythoff construction for the uniform 5-polytopes

Construction of the reflective 5-dimensional uniform polytopes are done through a Wythoff construction process, and represented through a Coxeter diagram, where each node represents a mirror. Nodes are ringed to imply which mirrors are active. The full set of uniform polytopes generated are based on the unique permutations of ringed nodes. Uniform 5-polytopes are named in relation to the regular polytopes in each family. Some families have two regular constructors and thus may have two ways of naming them.

Here are the primary operators available for constructing and naming the uniform 5-polytopes.

The last operation, the snub, and more generally the alternation, are the operation that can create nonreflective forms. These are drawn with "hollow rings" at the nodes.

The prismatic forms and bifurcating graphs can use the same truncation indexing notation, but require an explicit numbering system on the nodes for clarity.

Operation Extended
Schläfli symbol
Coxeter diagram Description
Parent t0{p,q,r,s} {p,q,r,s} CDel node 1.pngCDel p.pngCDel node.pngCDel q.pngCDel node.pngCDel r.pngCDel node.pngCDel s.pngCDel node.png Any regular 5-polytope
Rectified t1{p,q,r,s} r{p,q,r,s} CDel node.pngCDel p.pngCDel node 1.pngCDel q.pngCDel node.pngCDel r.pngCDel node.pngCDel s.pngCDel node.png The edges are fully truncated into single points. The 5-polytope now has the combined faces of the parent and dual.
Birectified t2{p,q,r,s} 2r{p,q,r,s} CDel node.pngCDel p.pngCDel node.pngCDel q.pngCDel node 1.pngCDel r.pngCDel node.pngCDel s.pngCDel node.png Birectification reduces faces to points, cells to their duals.
Trirectified t3{p,q,r,s} 3r{p,q,r,s} CDel node.pngCDel p.pngCDel node.pngCDel q.pngCDel node.pngCDel r.pngCDel node 1.pngCDel s.pngCDel node.png Trirectification reduces cells to points. (Dual rectification)
Quadrirectified t4{p,q,r,s} 4r{p,q,r,s} CDel node.pngCDel p.pngCDel node.pngCDel q.pngCDel node.pngCDel r.pngCDel node.pngCDel s.pngCDel node 1.png Quadrirectification reduces 4-faces to points. (Dual)
Truncated t0,1{p,q,r,s} t{p,q,r,s} CDel node 1.pngCDel p.pngCDel node 1.pngCDel q.pngCDel node.pngCDel r.pngCDel node.pngCDel s.pngCDel node.png Each original vertex is cut off, with a new face filling the gap. Truncation has a degree of freedom, which has one solution that creates a uniform truncated 5-polytope. The 5-polytope has its original faces doubled in sides, and contains the faces of the dual.
Cube truncation sequence.svg
Cantellated t0,2{p,q,r,s} rr{p,q,r,s} CDel node 1.pngCDel p.pngCDel node.pngCDel q.pngCDel node 1.pngCDel r.pngCDel node.pngCDel s.pngCDel node.png In addition to vertex truncation, each original edge is beveled with new rectangular faces appearing in their place.
Cube cantellation sequence.svg
Runcinated t0,3{p,q,r,s} CDel node 1.pngCDel p.pngCDel node.pngCDel q.pngCDel node.pngCDel r.pngCDel node 1.pngCDel s.pngCDel node.png Runcination reduces cells and creates new cells at the vertices and edges.
Stericated t0,4{p,q,r,s} 2r2r{p,q,r,s} CDel node 1.pngCDel p.pngCDel node.pngCDel q.pngCDel node.pngCDel r.pngCDel node.pngCDel s.pngCDel node 1.png Sterication reduces facets and creates new facets (hypercells) at the vertices and edges in the gaps. (Same as expansion operation for 5-polytopes.)
Omnitruncated t0,1,2,3,4{p,q,r,s} CDel node 1.pngCDel p.pngCDel node 1.pngCDel q.pngCDel node 1.pngCDel r.pngCDel node 1.pngCDel s.pngCDel node 1.png All four operators, truncation, cantellation, runcination, and sterication are applied.
Half h{2p,3,q,r} CDel node h1.pngCDel 2x.pngCDel p.pngCDel node.pngCDel 3.pngCDel node.pngCDel q.pngCDel node.pngCDel r.pngCDel node.png Alternation, same as CDel labelp.pngCDel branch 10ru.pngCDel split2.pngCDel node.pngCDel q.pngCDel node.pngCDel r.pngCDel node.png
Cantic h2{2p,3,q,r} CDel node h1.pngCDel 2x.pngCDel p.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel q.pngCDel node.pngCDel r.pngCDel node.png Same as CDel labelp.pngCDel branch 10ru.pngCDel split2.pngCDel node 1.pngCDel q.pngCDel node.pngCDel r.pngCDel node.png
Runcic h3{2p,3,q,r} CDel node h1.pngCDel 2x.pngCDel p.pngCDel node.pngCDel 3.pngCDel node.pngCDel q.pngCDel node 1.pngCDel r.pngCDel node.png Same as CDel labelp.pngCDel branch 10ru.pngCDel split2.pngCDel node.pngCDel q.pngCDel node 1.pngCDel r.pngCDel node.png
Runcicantic h2,3{2p,3,q,r} CDel node h1.pngCDel 2x.pngCDel p.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel q.pngCDel node 1.pngCDel r.pngCDel node.png Same as CDel labelp.pngCDel branch 10ru.pngCDel split2.pngCDel node 1.pngCDel q.pngCDel node 1.pngCDel r.pngCDel node.png
Steric h4{2p,3,q,r} CDel node h1.pngCDel 2x.pngCDel p.pngCDel node.pngCDel 3.pngCDel node.pngCDel q.pngCDel node.pngCDel r.pngCDel node 1.png Same as CDel labelp.pngCDel branch 10ru.pngCDel split2.pngCDel node.pngCDel q.pngCDel node.pngCDel r.pngCDel node 1.png
Runcisteric h3,4{2p,3,q,r} CDel node h1.pngCDel 2x.pngCDel p.pngCDel node.pngCDel 3.pngCDel node.pngCDel q.pngCDel node 1.pngCDel r.pngCDel node 1.png Same as CDel labelp.pngCDel branch 10ru.pngCDel split2.pngCDel node.pngCDel q.pngCDel node 1.pngCDel r.pngCDel node 1.png
Stericantic h2,4{2p,3,q,r} CDel node h1.pngCDel 2x.pngCDel p.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel q.pngCDel node.pngCDel r.pngCDel node 1.png Same as CDel labelp.pngCDel branch 10ru.pngCDel split2.pngCDel node 1.pngCDel q.pngCDel node.pngCDel r.pngCDel node 1.png
Steriruncicantic h2,3,4{2p,3,q,r} CDel node h1.pngCDel 2x.pngCDel p.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel q.pngCDel node 1.pngCDel r.pngCDel node 1.png Same as CDel labelp.pngCDel branch 10ru.pngCDel split2.pngCDel node 1.pngCDel q.pngCDel node 1.pngCDel r.pngCDel node 1.png
Snub s{p,2q,r,s} CDel node h.pngCDel p.pngCDel node h.pngCDel 2x.pngCDel q.pngCDel node.pngCDel r.pngCDel node.pngCDel s.pngCDel node.png Alternated truncation
Snub rectified sr{p,q,2r,s} CDel node h.pngCDel p.pngCDel node h.pngCDel q.pngCDel node h.pngCDel 2x.pngCDel r.pngCDel node.pngCDel s.pngCDel node.png Alternated truncated rectification
ht0,1,2,3{p,q,r,s} CDel node h.pngCDel p.pngCDel node h.pngCDel q.pngCDel node h.pngCDel r.pngCDel node h.pngCDel 2x.pngCDel s.pngCDel node.png Alternated runcicantitruncation
Full snub ht0,1,2,3,4{p,q,r,s} CDel node h.pngCDel p.pngCDel node h.pngCDel q.pngCDel node h.pngCDel r.pngCDel node h.pngCDel s.pngCDel node h.png Alternated omnitruncation

Regular and uniform honeycombs

Coxeter diagram correspondences between families and higher symmetry within diagrams. Nodes of the same color in each row represent identical mirrors. Black nodes are not active in the correspondence.

There are five fundamental affine Coxeter groups, and 13 prismatic groups that generate regular and uniform tessellations in Euclidean 4-space.[6][7]

Fundamental groups
# Coxeter group Coxeter diagram Forms
1 [3[5]] [(3,3,3,3,3)] CDel branch.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.png 7
2 [4,3,3,4] CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png 19
3 [4,3,31,1] [4,3,3,4,1+] CDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png = CDel node h0.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png 23 (8 new)
4 [31,1,1,1] [1+,4,3,3,4,1+] CDel nodes.pngCDel split2.pngCDel node.pngCDel split1.pngCDel nodes.png = CDel node h0.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h0.png 9 (0 new)
5 [3,4,3,3] CDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png 31 (21 new)

There are three regular honeycombs of Euclidean 4-space:

Other families that generate uniform honeycombs:

Non-Wythoffian uniform tessellations in 4-space also exist by elongation (inserting layers), and gyration (rotating layers) from these reflective forms.

Prismatic groups
# Coxeter group Coxeter diagram
1 × [4,3,4,2,∞] CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node.pngCDel infin.pngCDel node.png
2 × [4,31,1,2,∞] CDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel 4a.pngCDel nodea.pngCDel 2.pngCDel node.pngCDel infin.pngCDel node.png
3 × [3[4],2,∞] CDel branch.pngCDel 3ab.pngCDel branch.pngCDel 2.pngCDel node.pngCDel infin.pngCDel node.png
4 ×x [4,4,2,∞,2,∞] CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node.pngCDel infin.pngCDel node.pngCDel 2.pngCDel node.pngCDel infin.pngCDel node.png
5 ×x [6,3,2,∞,2,∞] CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node.pngCDel infin.pngCDel node.pngCDel 2.pngCDel node.pngCDel infin.pngCDel node.png
6 ×x [3[3],2,∞,2,∞] CDel node.pngCDel split1.pngCDel branch.pngCDel 2.pngCDel node.pngCDel infin.pngCDel node.pngCDel 2.pngCDel node.pngCDel infin.pngCDel node.png
7 ×xx [∞,2,∞,2,∞,2,∞] CDel node.pngCDel infin.pngCDel node.pngCDel 2.pngCDel node.pngCDel infin.pngCDel node.pngCDel 2.pngCDel node.pngCDel infin.pngCDel node.pngCDel 2.pngCDel node.pngCDel infin.pngCDel node.png
8 x [3[3],2,3[3]] CDel node.pngCDel split1.pngCDel branch.pngCDel 2.pngCDel node.pngCDel split1.pngCDel branch.png
9 × [3[3],2,4,4] CDel node.pngCDel split1.pngCDel branch.pngCDel 2.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
10 × [3[3],2,6,3] CDel node.pngCDel split1.pngCDel branch.pngCDel 2.pngCDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png
11 × [4,4,2,4,4] CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
12 × [4,4,2,6,3] CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png
13 × [6,3,2,6,3] CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png

Compact regular tessellations of hyperbolic 4-space

There are five kinds of convex regular honeycombs and four kinds of star-honeycombs in H4 space:[8]

Honeycomb name Schläfli
Symbol
{p,q,r,s}
Coxeter diagram Facet
type
{p,q,r}
Cell
type
{p,q}
Face
type
{p}
Face
figure
{s}
Edge
figure
{r,s}
Vertex
figure

{q,r,s}
Dual
Order-5 5-cell {3,3,3,5} CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png {3,3,3} {3,3} {3} {5} {3,5} {3,3,5} {5,3,3,3}
Order-3 120-cell {5,3,3,3} CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png {5,3,3} {5,3} {5} {3} {3,3} {3,3,3} {3,3,3,5}
Order-5 tesseractic {4,3,3,5} CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png {4,3,3} {4,3} {4} {5} {3,5} {3,3,5} {5,3,3,4}
Order-4 120-cell {5,3,3,4} CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png {5,3,3} {5,3} {5} {4} {3,4} {3,3,4} {4,3,3,5}
Order-5 120-cell {5,3,3,5} CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png {5,3,3} {5,3} {5} {5} {3,5} {3,3,5} Self-dual

There are four regular star-honeycombs in H4 space:

Honeycomb name Schläfli
Symbol
{p,q,r,s}
Coxeter diagram Facet
type
{p,q,r}
Cell
type
{p,q}
Face
type
{p}
Face
figure
{s}
Edge
figure
{r,s}
Vertex
figure

{q,r,s}
Dual
Order-3 small stellated 120-cell {5/2,5,3,3} CDel node 1.pngCDel 5.pngCDel rat.pngCDel d2.pngCDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png {5/2,5,3} {5/2,5} {5} {5} {3,3} {5,3,3} {3,3,5,5/2}
Order-5/2 600-cell {3,3,5,5/2} CDel node.pngCDel 5.pngCDel rat.pngCDel d2.pngCDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png {3,3,5} {3,3} {3} {5/2} {5,5/2} {3,5,5/2} {5/2,5,3,3}
Order-5 icosahedral 120-cell {3,5,5/2,5} CDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.pngCDel 5.pngCDel rat.pngCDel d2.pngCDel node.pngCDel 5.pngCDel node.png {3,5,5/2} {3,5} {3} {5} {5/2,5} {5,5/2,5} {5,5/2,5,3}
Order-3 great 120-cell {5,5/2,5,3} CDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.pngCDel 5.pngCDel rat.pngCDel d2.pngCDel node.pngCDel 5.pngCDel node 1.png {5,5/2,5} {5,5/2} {5} {3} {5,3} {5/2,5,3} {3,5,5/2,5}

Regular and uniform hyperbolic honeycombs

There are 5 compact hyperbolic Coxeter groups of rank 5, each generating uniform honeycombs in hyperbolic 4-space as permutations of rings of the Coxeter diagrams. There are also 9 paracompact hyperbolic Coxeter groups of rank 5, each generating uniform honeycombs in 4-space as permutations of rings of the Coxeter diagrams. Paracompact groups generate honeycombs with infinite facets or vertex figures.

Compact hyperbolic groups

= [(3,3,3,3,4)]: CDel label4.pngCDel branch.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.png

= [5,3,31,1]: CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png

= [3,3,3,5]: CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png

= [4,3,3,5]: CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
= [5,3,3,5]: CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png

Paracompact hyperbolic groups

= [3,3[4]]: CDel node.pngCDel split1.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.png

= [4,3[4]]: CDel node.pngCDel split1.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel 4.pngCDel node.png
= [(3,3,4,3,4)]: CDel branch.pngCDel 4-4.pngCDel nodes.pngCDel split2.pngCDel node.png
= [3[3]×[]]: CDel node.pngCDel split1.pngCDel branchbranch.pngCDel split2.pngCDel node.png

= [4,/3\,3,4]: CDel nodes.pngCDel split2-43.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
= [3,4,31,1]: CDel nodes.pngCDel split2.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
= [4,32,1]: CDel nodes.pngCDel split2-43.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
= [4,31,1,1]: CDel nodes.pngCDel split2-43.pngCDel node.pngCDel split1.pngCDel nodes.png

= [3,4,3,4]: CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png

Notes

  1. ^ T. Gosset: On the Regular and Semi-Regular Figures in Space of n Dimensions, Messenger of Mathematics, Macmillan, 1900
  2. ^ Multidimensional Glossary, George Olshevsky
  3. ^ Uniform Polytera, Jonathan Bowers
  4. ^ Regular and semi-regular polytopes III, p.315 Three finite groups of 5-dimensions
  5. ^ Coxeter, Regular polytopes, §12.6 The number of reflections, equation 12.61
  6. ^ Regular polytopes, p.297. Table IV, Fundamental regions for irreducible groups generated by reflections.
  7. ^ Regular and Semiregular polytopes, II, pp.298-302 Four-dimensional honeycombs
  8. ^ Coxeter, The Beauty of Geometry: Twelve Essays, Chapter 10: Regular honeycombs in hyperbolic space, Summary tables IV p213

References

  • T. Gosset: On the Regular and Semi-Regular Figures in Space of n Dimensions, Messenger of Mathematics, Macmillan, 1900 (3 regular and one semiregular 4-polytope)
  • A. Boole Stott: Geometrical deduction of semiregular from regular polytopes and space fillings, Verhandelingen of the Koninklijke academy van Wetenschappen width unit Amsterdam, Eerste Sectie 11,1, Amsterdam, 1910
  • H.S.M. Coxeter:
    • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973 (p. 297 Fundamental regions for irreducible groups generated by reflections, Spherical and Euclidean)
    • H.S.M. Coxeter, The Beauty of Geometry: Twelve Essays (Chapter 10: Regular honeycombs in hyperbolic space, Summary tables IV p213)
  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN978-0-471-01003-6[1]
    • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
    • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591] (p. 287 5D Euclidean groups, p. 298 Four-dimensionsal honeycombs)
    • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. Dissertation, University of Toronto, 1966
  • James E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge studies in advanced mathematics, 29 (1990) (Page 141, 6.9 List of hyperbolic Coxeter groups, figure 2) [2]

External links

Family An Bn I2(p) / Dn E6 / E7 / E8 / F4 / G2 Hn
Regular polygon Triangle Square p-gon Hexagon Pentagon
Uniform polyhedron Tetrahedron OctahedronCube Demicube DodecahedronIcosahedron
Uniform polychoron Pentachoron 16-cellTesseract Demitesseract 24-cell 120-cell600-cell
Uniform 5-polytope 5-simplex 5-orthoplex5-cube 5-demicube
Uniform 6-polytope 6-simplex 6-orthoplex6-cube 6-demicube 122221
Uniform 7-polytope 7-simplex 7-orthoplex7-cube 7-demicube 132231321
Uniform 8-polytope 8-simplex 8-orthoplex8-cube 8-demicube 142241421
Uniform 9-polytope 9-simplex 9-orthoplex9-cube 9-demicube
Uniform 10-polytope 10-simplex 10-orthoplex10-cube 10-demicube
Uniform n-polytope n-simplex n-orthoplexn-cube n-demicube 1k22k1k21 n-pentagonal polytope
Topics: Polytope familiesRegular polytopeList of regular polytopes and compounds
Space Family / /
E2 Uniform tiling {3[3]} δ3 3 3 Hexagonal
E3 Uniform convex honeycomb {3[4]} δ4 4 4
E4 Uniform 4-honeycomb {3[5]} δ5 5 5 24-cell honeycomb
E5 Uniform 5-honeycomb {3[6]} δ6 6 6
E6 Uniform 6-honeycomb {3[7]} δ7 7 7 222
E7 Uniform 7-honeycomb {3[8]} δ8 8 8 133331
E8 Uniform 8-honeycomb {3[9]} δ9 9 9 152251521
E9 Uniform 9-honeycomb {3[10]} δ10 10 10
E10 Uniform 10-honeycomb {3[11]} δ11 11 11
En-1 Uniform (n-1)-honeycomb {3[n]} δn n n 1k22k1k21