완전 파충류 전성기

Full reptend prime

숫자 이론에서, 완전 파충류 프라임, 완전 반복 프라임, 적절한 프라임[1]: 166 또는 베이스 b에서 긴 프라임Fermat 지수를 나타내는 홀수 p이다.

(여기서 p나누지 않는다 b)는 주기적인 숫자를 제공한다.따라서 base 에서1 / {\1/의 디지털 확장은 1과 p - 1 사이의 숫자 회전과 / p 의 숫자와 마찬가지로 해당 순환수의 숫자를 무한 반복한다.prime p에 해당하는 주기적 숫자p가 완전한 파충류 prime인 경우에만 p - 1자리를 갖는다.즉, 승수 순서 순서p b = p - 1로, b원시 뿌리 모듈p인 것과 같다.

"긴 전성기"라는 용어는 존 콘웨이와 리처드 가이(Richard Guy)가 <숫자책>에서 사용하였다.혼란스럽게, Sloane의 OEIS는 이러한 소수점들을 "순환 숫자"라고 부른다.

베이스 10

베이스가 지정되지 않은 경우 베이스 10을 가정할 수 있으며, 이 경우 수의 확장을 반복적 십진법이라고 한다.베이스 10에서, 완전한 파충류 원수가 숫자 1로 끝나는 경우, 각 숫자 0, 1, ..., 9는 파충류에 각각 다른 숫자와 같은 횟수만큼 나타난다.[1]: 166 (베이스 10에서의 그러한 프리타임은 OEIS: A073761을 참조한다.실제로 base b에서 완전한 파충류 prime이 숫자 1로 끝나는 경우, 각 숫자 0, 1, ..., b-1이 다른 숫자와 동일한 횟수로 반복적으로 나타나지만 b = 12일 때 그러한 prime은 존재하지 않는데, b = 12는 base 12의 모든 전체 파충류 prime이 동일한 base에서 5 또는 7로 끝나기 때문이다.일반적으로 b가 0 또는 1 modulo 4와 일치할 때 그러한 prime은 존재하지 않는다.

이 공식에서 소수점 단위로 주기적 숫자를 생성하는 1000 미만의 p 값은 다음과 같다.

7, 17, 19, 23, 29, 47, 59, 61, 97, 109, 113, 131, 149, 167, 179, 181, 193, 223, 229, 233, 257, 263, 269, 313, 337, 367, 379, 383, 389, 419, 433, 461, 487, 491, 499, 503, 509, 541, 571, 577, 593, 619, 647, 659, 701, 709, 727, 743, 811, 821, 823, 857, 863, 887, 937, 941, 953, 971, 977, 983, ... (sequence A001913 in the OEIS)

예를 들어, 사례 b = 10, p = 7은 주기적인 번호 142857을 부여한다. 따라서 7은 완전한 파충류 전성기다.게다가 베이스 10에 1을 7로 나누면 0.142857 142857 142857 142857 142857...

p의 모든 값이 이 공식을 사용하여 주기적인 숫자를 산출하는 것은 아니다. 예를 들어 p = 13은 076923 076923을 제공한다.이러한 실패 사례에는 항상 p - 1자리 숫자의 반복(아마도 여러 자리)이 포함될 것이다.

이 수열의 알려진 패턴은 대수적 숫자 이론에서 비롯된다. 특히 이 수열은 10이 원시적인 뿌리 모듈로 p와 같은 primes p의 집합이다.원시 뿌리에 대한 아르틴의 추측은 이 염기서열이 37.395를 포함하고 있다는 것이다.프라임의 백분율.

완전한 파충류 프리타임의 발생 패턴

고급 모듈식 산술은 다음과 같은 형태의 모든 프라임을 보여줄 수 있다.

  1. 40k + 1
  2. 40k + 3
  3. 40k + 9
  4. 40k + 13
  5. 40k + 27
  6. 40k + 31
  7. 40k + 37
  8. 40k + 39

베이스 10에서는 결코 완전한 파충류 전성기가 될 수 없다.이러한 양식의 첫 번째 프리타임은 기간과 함께 다음과 같다.

40k + 1 40k + 3 40k + 9 40k + 13 40k + 27 40k + 31 40k + 37 40k + 39
41
5주기
3
기간 1
89
기간로44번길
13
6주기
67
기간 33
31
기간 15
37
3주기
79
기간 13
241
기간 30
43
기간 21
409
기간 204
53
기간 13
107
기간 53
71
기간 35
157
기간 78
199
기간 99
281
기간 28
83
기간 41
449
기간 32
173
기간 43
227
기간 113
151
기간 75
197
98년 기간
239
7주기
401
기간 200
163
기간 81
569
기간 284
293
기간 146
307
기간 153
191
기간 95
277
기간 69
359
기간 179
521
기간 52
283
기간 141
769
기간 192
373
기간 186
347
기간 173
271
5주기
317
79년 기간
439
219년 기간
601
기간 300
443
기간 221
809
기간 202
613
기간 51
467
기간 233
311
기간로155번길
397
기간 99
479
기간 239

그러나 연구에 따르면 40k + n 형태의 프리임의 2/3가 완전한 파충류 프리타임으로 여기서 n은 {7, 11, 17, 19, 21, 23, 29, 33}이다.어떤 시퀀스의 경우, 완전한 파충류 프리타임의 우세함이 훨씬 더 크다.예를 들어, 100,000 미만의 120k + 23 형식의 295개의 프리마임 중 285개는 완전 파충류 프리마임이며, 20903개는 완전 파충류가 아닌 최초의 프리마임이다.

2진수 전체 파충류 프라임

베이스 2에서 전체 파충류 프리타임은 다음과 같다:(1000 미만)

3, 5, 11, 13, 19, 29, 37, 53, 59, 61, 67, 83, 101, 107, 131, 139, 149, 163, 173, 179, 181, 197, 211, 227, 269, 293, 317, 347, 349, 373, 379, 389, 419, 421, 443, 461, 467, 491, 509, 523, 541, 547, 557, 563, 587, 613, 619, 653, 659, 661, 677, 701, 709, 757, 773, 787, 797, 821, 827, 829, 853, 859, 877, 883, 907, 941, 947, ... (sequence A001122 in theOEIS)

이러한 소수에서 2는 원시 뿌리 모듈로 p이므로 2 modulon p는 1에서 p - 1 사이의 자연수가 될 수 있다.

p - 의 이러한 시퀀스는 (p - 1)/ 2 의 이동에 대해 -1의 음의 피크인 자기 상관 함수를 가지고 있다 이러한 시퀀스의 무작위성은 다이하드 테스트에 의해 조사되었다.[2]

All of them are of form 8k + 3 or 8k + 5, because if p = 8k + 1 or 8k + 7, then 2 is a quadratic residue modulo p, so p divides , and the period of in base 2 must divide and cannot be p − 1, so they are베이스 2에서 완전한 파충류는 아니다.

또한, 3(모드 8)에 해당하는 모든 안전한 프리타임은 베이스 2에서 완전한 파충류 프리타임이다.예를 들어 3, 11, 59, 83, 107, 179, 227, 347, 467, 563, 587, 1019, 1187, 1283, 1307, 1523, 1619, 1907 등(2000년 미만)이다.

바이너리 전체 파충류 프라임 시퀀스(최대 길이 소수 시퀀스라고도 함)는 암호화 및 오류 수정 코딩 애플리케이션을 찾았다.[3]이러한 응용 프로그램에서는 일반적으로 이진 시퀀스를 발생시키는 베이스 2에 대한 반복 십진법이 사용된다./ 1/에 대한 최대 길이 이진 시퀀스(2가 p의 원시 루트인 경우):[4]

다음은 1 또는 7(mod 8)에 해당하는 프리타임에 대한 기간(이진수)에 대한 목록이다. (1000 미만)

8k + 1 17 41 73 89 97 113 137 193 233 241 257 281 313 337 353 401 409 433 449 457 521 569
마침표 8 20 9 11 48 28 68 96 29 24 16 70 156 21 88 200 204 72 224 76 260 284
8k + 1 577 593 601 617 641 673 761 769 809 857 881 929 937 953 977 1009 1033 1049 1097 1129 1153 1193
마침표 144 148 25 154 64 48 380 384 404 428 55 464 117 68 488 504 258 262 274 564 288 298
8k + 7 7 23 31 47 71 79 103 127 151 167 191 199 223 239 263 271 311 359 367 383 431 439
마침표 3 11 5 23 35 39 51 7 15 83 95 99 37 119 131 135 155 179 183 191 43 73
8k + 7 463 479 487 503 599 607 631 647 719 727 743 751 823 839 863 887 911 919 967 983 991 1031
마침표 231 239 243 251 299 303 45 323 359 121 371 375 411 419 431 443 91 153 483 491 495 515

그것들 중 어느 도 2진법으로 꽉 찬 파충류 프라임은 아니다.

n번째 prime의 2진수 기간은

2, 4, 3, 10, 12, 8, 18, 11, 28, 5, 36, 20, 14, 23, 52, 58, 60, 66, 35, 9, 39, 82, 11, 48, 100, 51, 106, 36, 28, 7, 130, 68, 138, 148, 15, 52, 162, 83, 172, 178, 180, 95, 96, 196, 99, 210, 37, 226, 76, 29, 119, 24, 50, 16, 131, 268, 135, 92, 70, 94, 292, 102, 155, 156, 316, 30, 21, 346, 348, 88, 179, 183, 372, 378, 191, 388, 44, ... (this sequence sn = 2 또는 prime = 3)(OEIS의 시퀀스 A014664)

n번째 prime의 2진수 주기 수준은

1, 1, 2, 1, 1, 2, 1, 2, 1, 6, 1, 2, 3, 2, 1, 1, 1, 1, 2, 8, 2, 1, 8, 2, 1, 2, 1, 3, 4, 18, 1, 2, 1, 1, 10, 3, 1, 2, 1, 1, 1, 2, 2, 1, 2, 1, 6, 1, 3, 8, 2, 10, 5, 16, 2, 1, 2, 3, 4, 3, 1, 3, 2, 2, 1, 11, 16, 1, 1, 4, 2, 2, 1, 1, 2, 1, 9, 2, 2, 1, 1, 10, 6, 6, 1, 2, 6, 1, 2, 1, 2, 2, 1, 3, 2, 1, 2, 1, 1, ... (sequence A001917 in the OEIS)

그러나 연구결과에 따르면 8k+n형식의 4분의 3이 염기서열 2에서는 n rept {3, 5}이(가) 완전 파충류 염기서열 3 또는 5(모드 8)로 1000 미만의 염기서열 87개가 있으며, 그 중 염기서열은 염기서열 3 또는 5(모드 8)로 67개, 총 77%가 된다.어떤 시퀀스의 경우, 완전한 파충류 프리타임의 우세함이 훨씬 더 크다.예를 들어, 100,000 미만의 24k+5 형태의 1206 프리타임 중 1078은 베이스 2의 완전한 파충류 프리타임이며, 베이스 2에서 풀 파충류가 아닌 것은 1013이 최초다.

n급 파충류 전성기

n번째 레벨의 파충류 프라임 {\k는 정수, 1 k k p p-1)의 팽창에서 서로 다른 주기를 갖는 prime p이다.베이스 10에서는 가장 작은 n번째 레벨의 파충류 프라임이 있다.

7, 3, 103, 53, 11, 79, 211, 41, 73, 281, 353, 37, 2393, 449, 3061, 1889, 137, 2467, 16189, 641, 3109, 4973, 11087, 1321, 101, 7151, 7669, 757, 38629, 1231, 49663, 12289, 859, 239, 27581, 9613, 18131, 13757, 33931, 9161, 118901, 6763, 18233, 1409, 88741, 4003, 5171, 19489, 86143, 23201, ... (sequence A054471 in the OEIS)

베이스 2에서 가장 작은 n번째 레벨의 파충류 프라임은

3, 7, 43, 113, 251, 31, 1163, 73, 397, 151, 331, 1753, 4421, 631, 3061, 257, 1429, 127, 6043, 3121, 29611, 1321, 18539, 601, 15451, 14327, 2971, 2857, 72269, 3391, 683, 2593, 17029, 2687, 42701, 11161, 13099, 1103, 71293, 13121, 17467, 2143, 83077, 25609, 5581, 5153, 26227, 2113, 51941, 2351, ... (sequence A101208 in the OEIS)
n n번째 수준 파충류 프리타임(십진수) OEIS 시퀀스
1 7, 17, 19, 23, 29, 47, 59, 61, 97, 109, 113, 131, 149, 167, 179, 181, 193, 223, 229, 233, 257, 263, 269, 313, 337, 367, 379, 383, 389, 419, 433, 461, 487, 491, 499, 503, 509, 541, 571, 577, 593, ... A006883
2 3, 13, 31, 43, 67, 71, 83, 89, 107, 151, 157, 163, 191, 197, 199, 227, 283, 293, 307, 311, 347, 359, 373, 401, 409, 431, 439, 443, 467, 479, 523, 557, 563, 569, 587, 599, ... A275081
3 103, 127, 139, 331, 349, 421, 457, 463, 607, 661, 673, 691, 739, 829, 967, 1657, 1669, 1699, 1753, 1993, 2011, 2131, 2287, 2647, 2659, 2749, 2953, 3217, 3229, 3583, 3691, 3697, 3739, 3793, 3823, 3931, ... A055628
4 53, 173, 277, 317, 397, 769, 773, 797, 809, 853, 1009, 1013, 1093, 1493, 1613, 1637, 1693, 1721, 2129, 2213, 2333, 2477, 2521, 2557, 2729, 2797, 2837, 3329, 3373, 3517, 3637, 3733, 3797, 3853, 3877, ... A056157
5 11, 251, 1061, 1451, 1901, 1931, 2381, 3181, 3491, 3851, 4621, 4861, 5261, 6101, 6491, 6581, 6781, 7331, 8101, 9941, 10331, 10771, 11251, 11261, 11411, 12301, 14051, 14221, 14411, ... A056210
6 79, 547, 643, 751, 907, 997, 1201, 1213, 1237, 1249, 1483, 1489, 1627, 1723, 1747, 1831, 1879, 1987, 2053, 2551, 2683, 3049, 3253, 3319, 3613, 3919, 4159, 4507, 4519, 4801, 4813, 4831, 4969, ... A056211
7 211, 617, 1499, 2087, 2857, 6007, 6469, 7127, 7211, 7589, 9661, 10193, 13259, 13553, 14771, 18047, 18257, 19937, 20903, 21379, 23549, 26153, 27259, 27539, 32299, 33181, 33461, 34847, 35491, 35897, ... A056212
8 41, 241, 1601, 1609, 2441, 2969, 3041, 3449, 3929, 4001, 4409, 5009, 6089, 6521, 6841, 8161, 8329, 8609, 9001, 9041, 9929, 13001, 13241, 14081, 14929, 16001, 16481, 17489, 17881, 18121, 19001, ... A056213
9 73, 1423, 1459, 2377, 2503, 3457, 7741, 9433, 10891, 10909, 16057, 17299, 17623, 20269, 21313, 22699, 24103, 26263, 28621, 28927, 29629, 30817, 32257, 34273, 34327, ... A056214
10 281, 521, 1031, 1951, 2281, 2311, 2591, 3671, 5471, 5711, 6791, 7481, 8111, 8681, 8761, 9281, 9551, 10601, 11321, 12401, 13151, 13591, 14831, 14951, 15671, 16111, 16361, 18671, ... A056215
n n번째 수준 파충류 프리타임(이진수) OEIS 시퀀스
1 3, 5, 11, 13, 19, 29, 37, 53, 59, 61, 67, 83, 101, 107, 131, 139, 149, 163, 173, 179, 181, 197, 211, 227, 269, 293, 317, 347, 349, 373, 379, 389, 419, 421, 443, 461, 467, 491, 509, 523, 541, 547, 557, 563, 587, ... A001122
2 7, 17, 23, 41, 47, 71, 79, 97, 103, 137, 167, 191, 193, 199, 239, 263, 271, 311, 313, 359, 367, 383, 401, 409, 449, 463, 479, 487, 503, 521, 569, 599, 607, 647, 719, 743, 751, 761, 769, ... A115591
3 43, 109, 157, 229, 277, 283, 307, 499, 643, 691, 733, 739, 811, 997, 1021, 1051, 1069, 1093, 1459, 1579, 1597, 1627, 1699, 1723, 1789, 1933, 2179, 2203, 2251, 2341, 2347, 2749, 2917, ... A001133
4 113, 281, 353, 577, 593, 617, 1033, 1049, 1097, 1153, 1193, 1201, 1481, 1601, 1889, 2129, 2273, 2393, 2473, 3049, 3089, 3137, 3217, 3313, 3529, 3673, 3833, 4001, 4217, 4289, 4457, 4801, 4817, 4937, ... A001134
5 251, 571, 971, 1181, 1811, 2011, 2381, 2411, 3221, 3251, 3301, 3821, 4211, 4861, 4931, 5021, 5381, 5861, 6221, 6571, 6581, 8461, 8501, 9091, 9461, 10061, 10211, 10781, 11251, 11701, 11941, 12541, ... A001135
6 31, 223, 433, 439, 457, 727, 919, 1327, 1399, 1423, 1471, 1831, 1999, 2017, 2287, 2383, 2671, 2767, 2791, 2953, 3271, 3343, 3457, 3463, 3607, 3631, 3823, 3889, 4129, 4423, 4519, 4567, 4663, 4729, 4759, ... A001136
7 1163, 1709, 2003, 3109, 3389, 3739, 5237, 5531, 5867, 7309, 9157, 9829, 10627, 10739, 11117, 11243, 11299, 11411, 11467, 13259, 18803, 20147, 20483, 21323, 21757, 27749, 27763, 29947, ... A152307
8 73, 89, 233, 937, 1217, 1249, 1289, 1433, 1553, 1609, 1721, 1913, 2441, 2969, 3257, 3449, 4049, 4201, 4273, 4297, 4409, 4481, 4993, 5081, 5297, 5689, 6089, 6449, 6481, 6689, 6857, 7121, 7529, 7993, ... A152308
9 397, 7867, 10243, 10333, 12853, 13789, 14149, 14293, 14563, 15643, 17659, 18379, 18541, 21277, 21997, 23059, 23203, 26731, 27739, 29179, 29683, 31771, 34147, 35461, 35803, 36541, 37747, 39979, ... A152309
10 151, 241, 431, 641, 911, 3881, 4751, 4871, 5441, 5471, 5641, 5711, 6791, 6871, 8831, 9041, 9431, 10711, 12721, 13751, 14071, 14431, 14591, 15551, 16631, 16871, 17231, 17681, 17791, 18401, 19031, 19471, ... A152310

다양한 기반에서 완전한 파충류 프리타임

아르틴은 또한 다음과 같이 추측했다.

  • 정사각형을 제외한 모든 베이스에는 무한히 많은 완전한 반복적인 프리타임이 있다.
  • 완벽한 파워를 제외한 모든 베이스에서 완전한 반복 프리타임과 1에서 4까지 제곱이 없는 부분이 37.395로 구성된다.전체 프라임의 백분율.(OEIS: A085397 참조)
베이스 완전 파충류 프라임 OEIS 시퀀스
−30 7, 41, 61, 83, 89, 107, 109, 127, 139, 173, 193, 197, 211, 227, 239, 281, 293, 311, 317, 331, 347, 349, 359, ... A105902
−29 2, 17, 23, 41, 59, 71, 73, 83, 89, 97, 101, 103, 107, 113, 137, 139, 167, 179, 199, 223, 227, 229, 239, 269, ... A105901
−28 3, 5, 13, 17, 19, 31, 41, 47, 59, 73, 83, 89, 101, 103, 131, 139, 167, 173, 181, 227, 229, 251, 257, 269, 283, ... A105900
−27 2, 5, 11, 17, 23, 29, 47, 53, 59, 71, 83, 89, 101, 107, 113, 131, 137, 149, 167, 173, 179, 191, 197, 227, 233, ... A105875
−26 11, 23, 29, 41, 53, 59, 61, 67, 73, 79, 83, 89, 97, 101, 103, 127, 137, 157, 163, 173, 191, 193, 199, 227, 263, ... A105898
−25 2, 3, 7, 11, 19, 23, 43, 47, 59, 79, 83, 103, 107, 131, 139, 151, 167, 179, 223, 227, 239, 263, 283, 307, 311, ... A105897
−24 13, 17, 19, 37, 41, 43, 47, 71, 89, 109, 113, 137, 139, 157, 163, 167, 181, 191, 211, 229, 233, 257, 263, 277, ... A105896
−23 2, 5, 7, 17, 19, 43, 67, 83, 89, 97, 107, 113, 137, 149, 181, 191, 199, 227, 229, 251, 263, 281, 283, 293, 337, ... A105895
−22 3, 5, 17, 37, 41, 53, 59, 151, 167, 179, 193, 233, 251, 263, 269, 271, 281, 317, 337, 359, 379, 389, 397, 409, ... A105894
−21 2, 29, 47, 53, 59, 67, 83, 97, 113, 127, 131, 137, 149, 151, 157, 167, 181, 197, 227, 233, 251, 281, 311, 313, ... A105893
−20 11, 13, 17, 31, 37, 53, 59, 73, 79, 113, 131, 137, 139, 157, 173, 179, 191, 199, 211, 233, 239, 257, 271, 277, ... A105892
−19 2, 3, 13, 29, 31, 37, 41, 53, 59, 67, 71, 79, 89, 103, 107, 113, 167, 173, 179, 193, 223, 227, 257, 269, 281, ... A105891
−18 5, 7, 23, 29, 31, 37, 47, 53, 61, 71, 101, 103, 109, 127, 149, 151, 157, 167, 173, 181, 191, 197, 223, 239, ... A105890
−17 2, 5, 19, 37, 41, 43, 47, 59, 61, 67, 83, 97, 103, 113, 127, 151, 173, 179, 191, 193, 197, 233, 239, 251, 263, ... A10589
−16 3, 7, 11, 19, 23, 47, 59, 67, 71, 79, 83, 103, 107, 131, 139, 163, 167, 179, 191, 199, 211, 227, 239, 263, 271, ... A105876
−15 2, 11, 13, 29, 37, 41, 43, 59, 71, 73, 89, 97, 101, 103, 127, 131, 149, 157, 163, 179, 191, 193, 239, 251, 269, ... A10587
−14 11, 17, 29, 31, 43, 47, 53, 73, 89, 97, 107, 109, 149, 163, 167, 179, 199, 241, 257, 271, 277, 311, 313, 317, ... A105886
−13 2, 3, 5, 23, 37, 41, 43, 73, 79, 89, 97, 107, 109, 127, 131, 137, 139, 149, 179, 191, 197, 199, 241, 251, 263, ... A105885
−12 5, 17, 23, 41, 47, 53, 59, 71, 83, 101, 107, 113, 131, 137, 149, 167, 173, 179, 191, 197, 227, 239, 251, 257, ... A10584
−11 2, 7, 13, 17, 29, 41, 73, 79, 83, 101, 107, 109, 127, 131, 139, 149, 151, 167, 173, 197, 227, 233, 239, 263, ... A10583년
−10 3, 17, 29, 31, 43, 61, 67, 71, 83, 97, 107, 109, 113, 149, 151, 163, 181, 191, 193, 199, 227, 229, 233, 257, ... A007348
−9 2, 7, 11, 19, 23, 31, 43, 47, 59, 71, 79, 83, 107, 127, 131, 139, 163, 167, 179, 191, 199, 211, 223, 227, 239, ... A105881
−8 5, 23, 29, 47, 53, 71, 101, 149, 167, 173, 191, 197, 239, 263, 269, 293, 311, 317, 359, 383, 389, 461, 479, ... A105880
−7 2, 3, 5, 13, 17, 31, 41, 47, 59, 61, 83, 89, 97, 101, 103, 131, 139, 167, 173, 199, 227, 229, 241, 251, 257, ... A105879
−6 13, 17, 19, 23, 41, 47, 61, 67, 71, 89, 109, 113, 137, 157, 167, 211, 229, 233, 257, 263, 277, 283, 331, 359, ... A105878
−5 2, 11, 17, 19, 37, 53, 59, 73, 79, 97, 113, 131, 137, 139, 151, 157, 173, 179, 193, 197, 233, 239, 257, 277, ... A105877
−4 3, 7, 11, 19, 23, 47, 59, 67, 71, 79, 83, 103, 107, 131, 139, 163, 167, 179, 191, 199, 211, 227, 239, 263, 271, ... A105876
−3 2, 5, 11, 17, 23, 29, 47, 53, 59, 71, 83, 89, 101, 107, 113, 131, 137, 149, 167, 173, 179, 191, 197, 227, 233, ... A105875
−2 5, 7, 13, 23, 29, 37, 47, 53, 61, 71, 79, 101, 103, 149, 167, 173, 181, 191, 197, 199, 239, 263, 269, 271, 293, ... A105874
2 3, 5, 11, 13, 19, 29, 37, 53, 59, 61, 67, 83, 101, 107, 131, 139, 149, 163, 173, 179, 181, 197, 211, 227, 269, ... A001122
3 2, 5, 7, 17, 19, 29, 31, 43, 53, 79, 89, 101, 113, 127, 137, 139, 149, 163, 173, 197, 199, 211, 223, 233, 257, ... A019334
4 (iii)
5 2, 3, 7, 17, 23, 37, 43, 47, 53, 73, 83, 97, 103, 107, 113, 137, 157, 167, 173, 193, 197, 223, 227, 233, 257, ... A019335
6 11, 13, 17, 41, 59, 61, 79, 83, 89, 103, 107, 109, 113, 127, 131, 137, 151, 157, 179, 199, 223, 227, 229, 233, ... A019336
7 2, 5, 11, 13, 17, 23, 41, 61, 67, 71, 79, 89, 97, 101, 107, 127, 151, 163, 173, 179, 211, 229, 239, 241, 257, ... A019337
8 3, 5, 11, 29, 53, 59, 83, 101, 107, 131, 149, 173, 179, 197, 227, 269, 293, 317, 347, 389, 419, 443, 461, 467, ... A019338
9 2 (다른 항목 없음)
10 7, 17, 19, 23, 29, 47, 59, 61, 97, 109, 113, 131, 149, 167, 179, 181, 193, 223, 229, 233, 257, 263, 269, 313, ... A001913
11 2, 3, 13, 17, 23, 29, 31, 41, 47, 59, 67, 71, 73, 101, 103, 109, 149, 163, 173, 179, 197, 223, 233, 251, 277, ... A019339
12 5, 7, 17, 31, 41, 43, 53, 67, 101, 103, 113, 127, 137, 139, 149, 151, 163, 173, 197, 223, 257, 269, 281, 283, ... A019340
13 2, 5, 11, 19, 31, 37, 41, 47, 59, 67, 71, 73, 83, 89, 97, 109, 137, 149, 151, 167, 197, 227, 239, 241, 281, 293, ... A019341
14 3, 17, 19, 23, 29, 53, 59, 73, 83, 89, 97, 109, 127, 131, 149, 151, 227, 239, 241, 251, 257, 263, 277, 283, 307, ... A019342
15 2, 13, 19, 23, 29, 37, 41, 47, 73, 83, 89, 97, 101, 107, 139, 149, 151, 157, 167, 193, 199, 227, 263, 269, 271, ... A019343
16 (iii)
17 2, 3, 5, 7, 11, 23, 31, 37, 41, 61, 97, 107, 113, 131, 139, 167, 173, 193, 197, 211, 227, 233, 269, 277, 283, ... A019344
18 5, 11, 29, 37, 43, 53, 59, 61, 67, 83, 101, 107, 109, 139, 149, 157, 163, 173, 179, 181, 197, 227, 251, 269, ... A019345
19 2, 7, 11, 13, 23, 29, 37, 41, 43, 47, 53, 83, 89, 113, 139, 163, 173, 191, 193, 239, 251, 257, 263, 269, 281, ... A019346
20 3, 13, 17, 23, 37, 43, 47, 53, 67, 73, 83, 103, 107, 113, 137, 157, 163, 167, 173, 223, 227, 233, 257, 263, 277, ... A019347
21 2, 19, 23, 29, 31, 53, 71, 97, 103, 107, 113, 137, 139, 149, 157, 179, 181, 191, 197, 223, 233, 239, 263, 271, ... A019348
22 5, 17, 19, 31, 37, 41, 47, 53, 71, 83, 107, 131, 139, 191, 193, 199, 211, 223, 227, 233, 269, 281, 283, 307, ... A019349
23 2, 3, 5, 17, 47, 59, 89, 97, 113, 127, 131, 137, 149, 167, 179, 181, 223, 229, 281, 293, 307, 311, 337, 347, ... A019350
24 7, 11, 13, 17, 31, 37, 41, 59, 83, 89, 107, 109, 113, 137, 157, 179, 181, 223, 227, 229, 233, 251, 257, 277, ... A019351
25 2 (다른 항목 없음)
26 3, 7, 29, 41, 43, 47, 53, 61, 73, 89, 97, 101, 107, 131, 137, 139, 157, 167, 173, 179, 193, 239, 251, 269, 271, ... A019352
27 2, 5, 17, 29, 53, 89, 101, 113, 137, 149, 173, 197, 233, 257, 269, 281, 293, 317, 353, 389, 401, 449, 461, 509, ... A019353
28 5, 11, 13, 17, 23, 41, 43, 67, 71, 73, 79, 89, 101, 107, 173, 179, 181, 191, 229, 257, 263, 269, 293, 313, 331, ... A019354
29 2, 3, 11, 17, 19, 41, 43, 47, 73, 79, 89, 97, 101, 113, 127, 131, 137, 163, 191, 211, 229, 251, 263, 269, 293, ... A019355
30 11, 23, 41, 43, 47, 59, 61, 79, 89, 109, 131, 151, 167, 173, 179, 193, 197, 199, 251, 263, 281, 293, 307, 317, ... A019356

base n에서 가장 작은 전체 반복 프림은 다음과 같다.

2, 3, 2, 0, 2, 11, 2, 3, 2, 7, 2, 5, 2, 3, 2, 0, 2, 5, 2, 3, 2, 5, 2, 7, 2, 3, 2, 5, 2, 11, 2, 3, 2, 19, 2, 0, 2, 3, 2, 7, 2, 5, 2, 3, 2, 11, 2, 5, 2, 3, 2, 5, 2, 7, 2, 3, 2, 5, 2, 19, 2, 3, 2, 0, 2, 7, 2, 3, 2, 19, 2, 5, 2, 3, 2, 13, 2, 5, 2, 3, 2, 5, 2, 11, 2, 3, 2, 5, 2, 11, 2, 3, 2, 7, 2, 7, 2, 3, 2, 0, ... (sequence A056619 in the OEIS)

참고 항목

참조

  1. ^ a b 딕슨, 레너드 E, 1952년, 숫자론 역사, 1권 첼시 퍼블릭.Co.
  2. ^ 벨라미, J. "2013. diehard testing을 통한 D 시퀀스의 랜덤성". arXiv:1312.3618
  3. ^ Kak, Subhash, Chatterjee, A. "십진수 순서에 대하여." IEEE 정보이론에 관한 거래, volIT-27, 페이지 647-652, 1981년 9월.
  4. ^ Kak, Subhash, "d-시퀀스를 이용한 암호화 및 오류 수정" IEEE Transfer.시스템, vol.C-34, 페이지 803-809, 1985.
  • Weisstein, Eric W. "Artin's Constant". MathWorld.
  • Weisstein, Eric W. "Full Reptend Prime". MathWorld.
  • 콘웨이, J. H. 그리고 가이 R. K.'숫자의 책'뉴욕: 스프링거-베를라크, 1996.
  • 프란시스, 리차드 L.; "수학적 해이스택스:또 다른 단위 번호 보기"; The College Mathical Journal, Vol. 19, No. 3 (1988년 5월), 페이지 240–246.