파라콤팩트 균일 벌집

Paracompact uniform honeycombs
파라콤팩트 일반 허니컴의 예
H3 336 CC center.png
{3,3,6}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
H3 633 FC boundary.png
{6,3,3}
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
H3 436 CC center.png
{4,3,6}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
H3 634 FC boundary.png
{6,3,4}
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
H3 536 CC center.png
{5,3,6}
CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
H3 635 FC boundary.png
{6,3,5}
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
H3 636 FC boundary.png
{6,3,6}
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
H3 363 FC boundary.png
{3,6,3}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png
H3 443 FC boundary.png
{4,4,3}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
H3 344 CC center.png
{3,4,4}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
H3 444 FC boundary.png
{4,4,4}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png

기하학에서 쌍곡선 공간의 균일한 벌집들은 볼록한 균일다면세포테셀레이션이다.3차원 쌍곡선 공간에는 위트오프 구조로 생성되고 각 패밀리의 Coxeter 다이어그램의 링 순열로 표현되는 파라콤팩트 균일한 벌집형 23개 그룹 패밀리가 있다.이러한 패밀리는 무한의 이상적인 정점을 포함하여 무한하거나 한이 없는 이나 정점 형상을 가진 균일한 벌집을 만들 수 있으며, 2차원 쌍곡선 기울기와 유사하다.

일반 파라콤팩트 벌집

균일한 파라콤팩트 H3 허니콤 중 11개는 규칙적인 것으로, 그들의 대칭 집단이 그들의 깃발에서 전이적으로 작용한다는 것을 의미한다.이들은 Schléfli 기호 {3,3,6}, {6,3,3}, {3,4,4,4}, {4,3}, {3,6,3}, {4,3,6}, {4,4,4}, {5,3,6}, {6,3,5}, {6},6}을 가지며, 아래에 나와 있다.4개의 유한 이상 다면세포가 있다: {3,3,6}, {4,3,6}, {3,4,4}, {5,3,6}.

11개의 파라콤팩트 일반 꿀벌집
H3 633 FC boundary.png
{6,3,3}
H3 634 FC boundary.png
{6,3,4}
H3 635 FC boundary.png
{6,3,5}
H3 636 FC boundary.png
{6,3,6}
H3 443 FC boundary.png
{4,4,3}
H3 444 FC boundary.png
{4,4,4}
H3 336 CC center.png
{3,3,6}
H3 436 CC center.png
{4,3,6}
H3 536 CC center.png
{5,3,6}
H3 363 FC boundary.png
{3,6,3}
H3 344 CC center.png
{3,4,4}
이름 슐레플리
기호
{p,q,r}
콕시터
CDel node.pngCDel p.pngCDel node.pngCDel q.pngCDel node.pngCDel r.pngCDel node.png

타자를 치다
{p,q}

타자를 치다
{p}
가장자리
형상을 나타내다
{r}
꼭지점
형상을 나타내다

{q,r}
이중 콕시터
무리를 짓다
순서 6 사면 벌집 {3,3,6} CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png {3,3} {3} {6} {3,6} {6,3,3} [6,3,3]
육각 타일링 벌집 {6,3,3} CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png {6,3} {6} {3} {3,3} {3,3,6}
순서-4 팔면 벌집 {3,4,4} CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png {3,4} {3} {4} {4,4} {4,4,3} [4,4,3]
사각 타일링 벌집 {4,4,3} CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png {4,4} {4} {3} {4,3} {3,4,4}
삼각 타일링 벌집 {3,6,3} CDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png {3,6} {3} {3} {6,3} 셀프듀얼 [3,6,3]
오더-6입방 벌집 {4,3,6} CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png {4,3} {4} {4} {3,6} {6,3,4} [6,3,4]
순서-4 육각형 타일링 벌집 {6,3,4} CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png {6,3} {6} {4} {3,4} {4,3,6}
순서-4 사각 타일링 벌집 {4,4,4} CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png {4,4} {4} {4} {4,4} 셀프듀얼 [4,4,4]
주문-6도면체 벌집 {5,3,6} CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png {5,3} {5} {5} {3,6} {6,3,5} [6,3,5]
순서-5 육각 타일링 벌집 {6,3,5} CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png {6,3} {6} {5} {3,5} {5,3,6}
오더-6 육각형 타일링 벌집 {6,3,6} CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png {6,3} {6} {6} {3,6} 셀프듀얼 [6,3,6]

파라콤팩트 균일한 벌집합들의 콕시터 그룹

Hyperbolic subgroup tree 36.png Hyperbolic subgroup tree 344.png
이 그래프들은 파라콤팩트 쌍곡선 Coxeter 그룹의 부분군 관계를 보여준다.순서 2 부분군은 거울 대칭의 평면으로 구르사트 사면체를 이등분하는 것을 나타낸다.

이것은 사면체 기본 영역(순위 4개 파라콤팩트 콕시터 그룹)에서 생성된 151개의 고유한 와이토피아 파라콤팩트 균일 벌집을 완전히 열거한 것이다.꿀콤은 이중 양식을 상호 참조하기 위해 여기서 색인화되며, 비주요 건축물을 중심으로 괄호가 있다.

교체가 나열되지만 반복되거나 균일한 솔루션을 생성하지 않는다.단일 홀 교체는 미러 탈거 작업을 의미한다.엔드 노드가 제거되면 또 다른 심플렉스(테트라헤드) 패밀리가 생성된다.구멍에 두 개의 분기가 있으면 빈버그 폴리토프(Vinberg polytope)가 생성되는데, 거울 대칭이 있는 빈버그 폴리토프만이 심플렉스 그룹과 관련이 있고, 이들의 균일한 허니콤은 체계적으로 탐구되지 않았다.4면체 그룹의 반쪽 그룹에 대한 특별한 경우를 제외하고, 이러한 비강제(피강) Coxeter 그룹은 이 페이지에 열거되지 않는다.

사면 쌍곡선 포물선 그룹 요약
콕시터군 심플렉스
부피
정류자 부분군 고유 벌집 수
[6,3,3] CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png 0.0422892336 [1+,6,(3,3)+] = [3,3[3]]+ 15
[4,4,3] CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png 0.0763304662 [1+,4,1+,4,3+] 15
[3,3[3]] CDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel branch.png 0.0845784672 [3,3[3]]+ 4
[6,3,4] CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png 0.1057230840 [1+,6,3+,4,1+] = [3[]x[]]+ 15
[3,41,1] CDel node.pngCDel 3.pngCDel node.pngCDel split1-44.pngCDel nodes.png 0.1526609324 [3+,41+,1+] 4
[3,6,3] CDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png 0.1691569344 [3+,6,3+] 8
[6,3,5] CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png 0.1715016613 [1+,6,(3,5)+] = [5,3[3]]+ 15
[6,31,1] CDel node.pngCDel 6.pngCDel node.pngCDel split1.pngCDel nodes.png 0.2114461680 [1+,6,(31,1)+] = [3[]x[]]+ 4
[4,3[3]] CDel node.pngCDel 4.pngCDel node.pngCDel split1.pngCDel branch.png 0.2114461680 [1+,4,3[3]]+ = [3[]x[]]+ 4
[4,4,4] CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png 0.2289913985 [4+,4+,4+]+ 6
[6,3,6] CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png 0.2537354016 [1+,6,3+,6,1+] = [3[3,3]]+ 8
[(4,4,3,3)] CDel node.pngCDel split1-44.pngCDel nodes.pngCDel split2.pngCDel node.png 0.3053218647 [(4,1+,4,(3,3)+)] 4
[5,3[3]] CDel node.pngCDel 5.pngCDel node.pngCDel split1.pngCDel branch.png 0.3430033226 [5,3[3]]+ 4
[(6,3,3,3)] CDel label6.pngCDel branch.pngCDel 3ab.pngCDel branch.pngCDel 2.png 0.3641071004 [(6,3,3,3)]+ 9
[3[]x[]] CDel node.pngCDel split1.pngCDel branch.pngCDel split2.pngCDel node.png 0.4228923360 [3[]x[]]+ 1
[41,1,1] CDel node.pngCDel 4.pngCDel node.pngCDel split1-44.pngCDel nodes.png 0.4579827971 [1+,41+,1+,1+] 0
[6,3[3]] CDel node.pngCDel 6.pngCDel node.pngCDel split1.pngCDel branch.png 0.5074708032 [1+,6,3[3]] = [3[3,3]]+ 2
[(6,3,4,3)] CDel label6.pngCDel branch.pngCDel 3ab.pngCDel branch.pngCDel label4.png 0.5258402692 [(6,3+,4,3+)] 9
[(4,4,4,3)] CDel label4.pngCDel branch.pngCDel 4-4.pngCDel branch.png 0.5562821156 [(4,1+,4,1+,4,3+)] 9
[(6,3,5,3)] CDel label6.pngCDel branch.pngCDel 3ab.pngCDel branch.pngCDel label5.png 0.6729858045 [(6,3,5,3)]+ 9
[(6,3,6,3)] CDel label6.pngCDel branch.pngCDel 3ab.pngCDel branch.pngCDel label6.png 0.8457846720 [(6,3+,6,3+)] 5
[(4,4,4,4)] CDel label4.pngCDel branch.pngCDel 4-4.pngCDel branch.pngCDel label4.png 0.9159655942 [(4+,4+,4+,4+)] 1
[3[3,3]] CDel branch.pngCDel splitcross.pngCDel branch.png 1.014916064 [3[3,3]]+ 0

비강제적(비강제적) 파라콤팩트 Coxeter 그룹의 전체 목록은 P에 의해 발표되었다.2003년 투마르킨.[1]H에서3 가장 작은 파라콤팩트 형태는 , 또는 [3,3,3,3,3,3]으로 나타낼 수 있는데, 파라콤팩트 쌍곡선 그룹[3,4]을 [3,4+]로 거울 제거하여 구성할 수 있다. 2중 기본 영역이 사면체에서 사면체 피라미드로 바뀐다.또 다른 피라미드는 또는 [4,4,1+,4] = [4,4,4,4,4,4] : = .

Removing a mirror from some of the cyclic hyperbolic Coxeter graphs become bow-tie graphs: [(3,3,4,1+,4)] = [((3,∞,3)),((3,∞,3))] or CDel branchu.pngCDel split2.pngCDel node.pngCDel split1.pngCDel branchu.png, [(3,4,4,1+,4)] = [((4,∞,3)),((3,∞,4))] or CDel branchu.pngCDel split2-43.pngCDel node.pngCDel split1-43.pngCDel branchu.png, [(4,4,4,1+,4)] = [((4,∞,4)),((4,∞,4))] or CDel branchu.pngCDel split2-44.pngCDel node.pngCDel split1-44.pngCDel branchu.png. CDel labelh.pngCDel node.pngCDel split1-44.pngCDel nodeab c1-2.pngCDel split2.pngCDel node c3.png = CDel labelinfin.pngCDel branch c1-2.pngCDel split2.pngCDel node c3.pngCDel split1.pngCDel branch c1-2.pngCDel labelinfin.png, CDel labelh.pngCDel node.pngCDel split1-44.pngCDel nodeab c1-2.pngCDel split2-43.pngCDel node c3.png = CDel labelinfin.pngCDel branch c1-2.pngCDel split2-43.pngCDel node c3.pngCDel split1-43.pngCDel branch c1-2.pngCDel labelinfin.png, CDel labelh.pngCDel node.pngCDel split1-44.pngCDel nodeab c1-2.pngCDel split2-44.pngCDel node c3.png = CDel labelinfin.pngCDel branch c1-2.pngCDel split2-44.pngCDel node c3.pngCDel split1-44.pngCDel branch c1-2.pngCDel labelinfin.png.

또 다른 과소평가된 반쪽 그룹은 파운드다.

급진적인 비선택적 부분군은 파운드로, 이것은 파운드로 삼각형 프리즘 영역으로 두 배가 될 수 있다.

피라미드 쌍곡선 포물선 그룹 요약
치수 순위 그래프
H3 5

CDel node.pngCDel split1.pngCDel nodes.pngCDel 2a2b-cross.pngCDel nodes.png CDel node.pngCDel split1-43.pngCDel nodes.pngCDel 2a2b-cross.pngCDel nodes.png CDel node.pngCDel split1-44.pngCDel nodes.pngCDel 2a2b-cross.pngCDel nodes.png CDel node.pngCDel split1-53.pngCDel nodes.pngCDel 2a2b-cross.pngCDel nodes.png CDel node.pngCDel split1-63.pngCDel nodes.pngCDel 2a2b-cross.pngCDel nodes.png
CDel branchu.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel ultra.pngCDel node.png CDel branchu.pngCDel split2.pngCDel node.pngCDel 4.pngCDel node.pngCDel ultra.pngCDel node.png CDel branchu.pngCDel split2-43.pngCDel node.pngCDel 3.pngCDel node.pngCDel ultra.pngCDel node.png CDel branchu.pngCDel split2-43.pngCDel node.pngCDel 4.pngCDel node.pngCDel ultra.pngCDel node.png CDel branchu.pngCDel split2-44.pngCDel node.pngCDel 3.pngCDel node.pngCDel ultra.pngCDel node.png CDel branchu.pngCDel split2-44.pngCDel node.pngCDel 4.pngCDel node.pngCDel ultra.pngCDel node.png
CDel branchu.pngCDel split2-53.pngCDel node.pngCDel 3.pngCDel node.pngCDel ultra.pngCDel node.png CDel branchu.pngCDel split2-54.pngCDel node.pngCDel 3.pngCDel node.pngCDel ultra.pngCDel node.png CDel branchu.pngCDel split2-55.pngCDel node.pngCDel 3.pngCDel node.pngCDel ultra.pngCDel node.png CDel branchu.pngCDel split2-63.pngCDel node.pngCDel 3.pngCDel node.pngCDel ultra.pngCDel node.png CDel branchu.pngCDel split2-64.pngCDel node.pngCDel 3.pngCDel node.pngCDel ultra.pngCDel node.png CDel branchu.pngCDel split2-65.pngCDel node.pngCDel 3.pngCDel node.pngCDel ultra.pngCDel node.png CDel branchu.pngCDel split2-66.pngCDel node.pngCDel 3.pngCDel node.pngCDel ultra.pngCDel node.png
CDel branchu.pngCDel split2.pngCDel node.pngCDel split1.pngCDel branchu.png CDel branchu.pngCDel split2-43.pngCDel node.pngCDel split1.pngCDel branchu.png CDel branchu.pngCDel split2-53.pngCDel node.pngCDel split1.pngCDel branchu.png CDel branchu.pngCDel split2-44.pngCDel node.pngCDel split1.pngCDel branchu.png CDel branchu.pngCDel split2-43.pngCDel node.pngCDel split1-43.pngCDel branchu.png CDel branchu.pngCDel split2-44.pngCDel node.pngCDel split1-43.pngCDel branchu.png CDel branchu.pngCDel split2-44.pngCDel node.pngCDel split1-44.pngCDel branchu.png CDel branchu.pngCDel split2-54.pngCDel node.pngCDel split1.pngCDel branchu.png CDel branchu.pngCDel split2-55.pngCDel node.pngCDel split1.pngCDel branchu.png CDel branchu.pngCDel split2-63.pngCDel node.pngCDel split1.pngCDel branchu.png CDel branchu.pngCDel split2-64.pngCDel node.pngCDel split1.pngCDel branchu.png CDel branchu.pngCDel split2-65.pngCDel node.pngCDel split1.pngCDel branchu.png CDel branchu.pngCDel split2-66.pngCDel node.pngCDel split1.pngCDel branchu.png

선형 그래프

[6,3,3]가족

# 벌집 이름
Coxeter 다이어그램:
슐레플리 기호
위치별 셀
(각 꼭지점 주위로 카운트)
정점수 사진
1
CDel node n2.pngCDel 3.pngCDel node n3.pngCDel 3.pngCDel node n4.png
2
CDel node n1.pngCDel 2.pngCDel node n3.pngCDel 3.pngCDel node n4.png
3
CDel node n1.pngCDel 6.pngCDel node n2.pngCDel 2.pngCDel node n4.png
4
CDel node n1.pngCDel 6.pngCDel node n2.pngCDel 3.pngCDel node n3.png
1 육각형의
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
{6,3,3}
- - - (4)
Uniform tiling 63-t0.png
(6.6.6)
Order-3 hexagonal tiling honeycomb verf.png CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
사면체
H3 633 FC boundary.png
2 정류된 육각형
CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
t1{6,3,3} 또는 r{6,3,3}
(2)
Uniform polyhedron-33-t0.png
(3.3.3)
- - (3)
Uniform tiling 63-t1.png
(3.6.3.6)
Rectified order-3 hexagonal tiling honeycomb verf.png CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 3.pngCDel node.png
삼각 프리즘
H3 633 boundary 0100.png
3 수정 순서-6 사면체
CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
t1{3,3,6} 또는 r{3,3,6}
(6)
Uniform polyhedron-33-t1.png
(3.3.3.3)
- - (2)
Uniform tiling 63-t2.png
(3.3.3.3.3.3)
Rectified order-6 tetrahedral honeycomb verf.png CDel node.pngCDel 6.pngCDel node 1.pngCDel 2.pngCDel node 1.png
육각 프리즘
H3 336 CC center 0100.png
4 order-6 사면체
CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
{3,3,6}
(∞)
Uniform polyhedron-33-t2.png
(3.3.3)
- - - Uniform tiling 63-t2.png CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.png
삼각 타일링
H3 336 CC center.png
5 잘린 육각형
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
t0,1{6,3,3} 또는 t{6,3,3}
(1)
Uniform polyhedron-33-t0.png
(3.3.3)
- - (3)
Uniform tiling 63-t01.png
(3.12.12)
Truncated order-3 hexagonal tiling honeycomb verf.png
삼각피라미드
H3 633-1100.png
6 통조림
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
t0,2{6,3,3} 또는 rr{6,3,3}
(1)
Uniform polyhedron-33-t1.png
3.3.3.3
(2)
Triangular prism.png
(4.4.3)
- (2)
Uniform tiling 63-t02.png
(3.4.6.4)
Cantellated order-3 hexagonal tiling honeycomb verf.png H3 633-1010.png
7 육각형의 달팽이관
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
t0,3{6,3,3}
(1)
Uniform polyhedron-33-t2.png
(3.3.3)
(3)
Triangular prism.png
(4.4.3)
(3)
Hexagonal prism.png
(4.4.6)
(1)
Uniform tiling 63-t0.png
(6.6.6)
Runcinated order-3 hexagonal tiling honeycomb verf.png H3 633-1001.png
8 알 수 있는 명령-6 사면체
CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
t0,2{3,3,6} 또는 rr{3,3,6}
(1)
Uniform polyhedron-33-t02.png
(3.4.3.4)
- (2)
Hexagonal prism.png
(4.4.6)
(2)
Uniform tiling 63-t1.png
(3.6.3.6)
Cantellated order-6 tetrahedral honeycomb verf.png H3 633-0101.png
9 굵게 깎은 육각형
CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
t1,2{6,3,3} 또는 2t{6,3,3}
(2)
Uniform polyhedron-33-t01.png
(3.6.6)
- - (2)
Uniform tiling 63-t12.png
(6.6.6)
Bitruncated order-3 hexagonal tiling honeycomb verf.png H3 633-0110.png
10 잘린서-6 사면체
CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
t0,1{3,6} 또는 t{3,3,6}
(6)
Uniform polyhedron-33-t12.png
(3.6.6)
- - (1)
Uniform tiling 63-t2.png
(3.3.3.3.3.3)
Truncated order-6 tetrahedral honeycomb verf.png H3 633-0011.png
11 캔트런으로 된 육각형
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
t0,1,2{6,3,3} 또는 tr{6,3,3}
(1)
Uniform polyhedron-33-t01.png
(3.6.6)
(1)
Triangular prism.png
(4.4.3)
- (2)
Uniform tiling 63-t012.svg
(4.6.12)
Cantitruncated order-3 hexagonal tiling honeycomb verf.png H3 633-1110.png
12 구불구불한 육각형
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
t0,1,3{6,3,3}
(1)
Uniform polyhedron-33-t02.png
(3.4.3.4)
(2)
Triangular prism.png
(4.4.3)
(1)
Dodecagonal prism.png
(4.4.12)
(1)
Uniform tiling 63-t01.png
(3.12.12)
Runcitruncated order-3 hexagonal tiling honeycomb verf.png H3 633-1101.png
13 6 사면구획
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
t0,1,3{3,3,6}
(1)
Uniform polyhedron-33-t12.png
(3.6.6)
(1)
Hexagonal prism.png
(4.4.6)
(2)
Hexagonal prism.png
(4.4.6)
(1)
Uniform tiling 63-t02.png
(3.4.6.4)
Runcitruncated order-6 tetrahedral honeycomb verf.png H3 633-1011.png
14 캔트런 경도 순서-6 사면체
CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
t0,1,2{3,3,6} 또는 tr{3,3,6}
(2)
Uniform polyhedron-33-t012.png
(4.6.6)
- (1)
Hexagonal prism.png
(4.4.6)
(1)
Uniform tiling 63-t12.png
(6.6.6)
Cantitruncated order-6 tetrahedral honeycomb verf.png H3 633-0111.png
15 의 육각형.
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
t0,1,2,3{6,3,3}
(1)
Uniform polyhedron-33-t012.png
(4.6.6)
(1)
Hexagonal prism.png
(4.4.6)
(1)
Dodecagonal prism.png
(4.4.12)
(1)
Uniform tiling 63-t012.svg
(4.6.12)
Omnitruncated order-3 hexagonal tiling honeycomb verf.png H3 633-1111.png
대식식
# 이름 이름
Coxeter 다이어그램:
슐레플리 기호

(각 꼭지점 주위로 카운트)
1
CDel node n2.pngCDel 3.pngCDel node n3.pngCDel 3.pngCDel node n4.png
2
CDel node n1.pngCDel 2.pngCDel node n3.pngCDel 3.pngCDel node n4.png
3
CDel node n1.pngCDel 6.pngCDel node n2.pngCDel 2.pngCDel node n4.png
4
CDel node n1.pngCDel 6.pngCDel node n2.pngCDel 3.pngCDel node n3.png
알트
[137]
(CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel branch 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.png) = CDel branch hh.pngCDel splitcross.pngCDel branch hh.png
- - (4)
Uniform tiling 333-t0.png
(3.3.3.3.3.3)
(4)
Uniform polyhedron-33-t2.png
(3.3.3)
Uniform polyhedron-33-t01.png CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
(3.6.6)
[138] 통조림 육각형
CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel branch 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node.png
(1)
Uniform polyhedron-33-t1.png
(3.3.3.3)
- (2)
Uniform tiling 333-t01.png
(3.6.3.6)
(2)
Uniform polyhedron-33-t12.png
(3.6.6)
Cantic hexagonal tiling honeycomb verf.png
[139]
CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel branch 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node 1.png
(1)
Uniform polyhedron-33-t0.png
(4.4.4)
(1)
Triangular prism.png
(4.4.3)
(1)
Uniform tiling 333-t0.png
(3.3.3.3.3.3)
(3)
Uniform polyhedron-33-t02.png
(3.4.3.4)
Runcic hexagonal tiling honeycomb verf.png
[140] 대서방 육각형
CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel branch 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node 1.png
(1)
Uniform polyhedron-33-t01.png
(3.6.6)
(1)
Triangular prism.png
(4.4.3)
(1)
Uniform tiling 333-t01.png
(3.6.3.6)
(2)
Uniform polyhedron-33-t012.png
(4.6.6)
Runcicantic hexagonal tiling honeycomb verf.png
일일요 스너브 수정 순서-6 사면체
CDel node h0.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel branch hh.pngCDel split2.pngCDel node h.pngCDel 3.pngCDel node h.png
sr{3,6} sr{3,6}
Uniform polyhedron-33-s012.png Uniform tiling 63-h12.png Tetrahedron.png
관개(3.3.3)
Alternated cantitruncated order-6 tetrahedral honeycomb vertex figure.png
일일요 광합성 스너브 순서-6 사면체
CDel node 1.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 3.pngCDel node h.png
sr3{3,6}
일일요 옴니즈너브 순서-6 사면체
CDel node h.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 3.pngCDel node h.png
ht0,1,2,3{6,3,3}
Uniform polyhedron-33-s012.png Uniform tiling 63-snub.png Tetrahedron.png
관개(3.3.3)

[6,3,4]가족

Coxeter 그룹의 링 순열에 의해 생성되는 15가지 형태가 있다. [6,3,4] 또는

#
콕시터 다이어그램
슐레플리 기호
꼭지점당 위치 및 카운트별 셀
0
CDel node n2.pngCDel 3.pngCDel node n3.pngCDel 4.pngCDel node n4.png
1
CDel node n1.pngCDel 2.pngCDel node n3.pngCDel 4.pngCDel node n4.png
2
CDel node n1.pngCDel 6.pngCDel node n2.pngCDel 2.pngCDel node n4.png
3
CDel node n1.pngCDel 6.pngCDel node n2.pngCDel 3.pngCDel node n3.png
16 (정규) 순서-4 육각형
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
{6,3,4}
- - - (8)
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png
Uniform tiling 63-t0.png
(6.6.6)
Order-4 hexagonal tiling honeycomb verf.png CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
(3.3.3.3)
H3 634 FC boundary.png
17 순서-4 육각형
CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
t1{6,3,4} 또는 r{6,3,4}
(2)
CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
Octahedron.png
(3.3.3.3)
- - (4)
CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform tiling 63-t1.png
(3.6.3.6)
Rectified order-4 hexagonal tiling honeycomb verf.png CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 4.pngCDel node.png
(4.4.4)
H3 634 boundary 0100.png
18 수정 순서-6입방체
CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
t1{4,3,6} 또는 r{4,3,6}
(6)
CDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
Cuboctahedron.png
(3.4.3.4)
- - (2)
CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.png
Uniform tiling 63-t2.png
(3.3.3.3.3.3)
Rectified order-6 cubic honeycomb verf.png CDel node.pngCDel 6.pngCDel node 1.pngCDel 2.pngCDel node 1.png
(6.4.4)
H3 436 CC center 0100.png
19 오더-6 입방체
CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
{4,3,6}
(20)
CDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
Hexahedron.png
(4.4.4)
- - - Uniform tiling 63-t2.png CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.png
(3.3.3.3.3.3)
H3 436 CC center.png
20 순서-4 육각형
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
t0,1{6,3,4} 또는 t{6,3,4}
(1)
CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
Octahedron.png
(3.3.3.3)
- - (4)
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform tiling 63-t01.png
(3.12.12)
Truncated order-4 hexagonal tiling honeycomb verf.png H3 634-1100.png
21 잘린 순서-6 입방체
CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
t1,2{6,3,4} 또는 2t{6,3,4}
(2)
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
Truncated octahedron.png
(4.6.6)
- - (2)
CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Uniform tiling 63-t12.png
(6.6.6)
Bitruncated order-4 hexagonal tiling honeycomb verf.png H3 634-0110.png
22 잘린 순서-6 입방체
CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png
t0,1{4,3,6} 또는 t{4,3,6}
(6)
CDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Truncated hexahedron.png
(3.8.8)
- - (1)
CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.png
Uniform tiling 63-t2.png
(3.3.3.3.3.3)
Truncated order-6 cubic honeycomb verf.png H3 634-0011.png
23 알 수 있는 순서-4 육각형
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
t0,2{6,3,4} 또는 rr{6,3,4}
(1)
CDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
Cuboctahedron.png
(3.4.3.4)
(2)
CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 4.pngCDel node.png
Tetragonal prism.png
(4.4.4)
- (2)
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.png
Uniform tiling 63-t02.png
(3.4.6.4)
Cantellated order-4 hexagonal tiling honeycomb verf.png H3 634-1010.png
24 알 수 있는 주문-6 입방체
CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
t0,2{4,3,6} 또는 rr{4,3,6}
(2)
CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
Small rhombicuboctahedron.png
(3.4.4.4)
- (2)
CDel node.pngCDel 6.pngCDel node 1.pngCDel 2.pngCDel node 1.png
Hexagonal prism.png
(4.4.6)
(1)
CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform tiling 63-t1.png
(3.6.3.6)
Cantellated order-6 cubic honeycomb verf.png H3 634-0101.png
25 런케이트 오더-6 입방체
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
t0,3{6,3,4}
(1)
CDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
Hexahedron.png
(4.4.4)
(3)
CDel node 1.pngCDel 2.pngCDel node.pngCDel 4.pngCDel node 1.png
Tetragonal prism.png
(4.4.4)
(3)
CDel node 1.pngCDel 6.pngCDel node.pngCDel 2.pngCDel node 1.png
Hexagonal prism.png
(4.4.6)
(1)
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png
Uniform tiling 63-t0.png
(6.6.6)
Runcinated order-4 hexagonal tiling honeycomb verf.png H3 634-1001.png
26 순서-4 육각형
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
t0,1,2{6,3,4} 또는 tr{6,3,4}
(1)
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
Truncated octahedron.png
(4.6.6)
(1)
CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 4.pngCDel node.png
Tetragonal prism.png
(4.4.4)
- (2)
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Uniform tiling 63-t012.svg
(4.6.12)
Cantitruncated order-4 hexagonal tiling honeycomb verf.png H3 634-1110.png
27 캔트런치 오더-6 입방체
CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png
t0,1,2{4,3,6} 또는 tr{4,3,6}
(2)
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Great rhombicuboctahedron.png
(4.6.8)
- (1)
CDel node.pngCDel 6.pngCDel node 1.pngCDel 2.pngCDel node 1.png
Hexagonal prism.png
(4.4.6)
(1)
CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Uniform tiling 63-t12.png
(6.6.6)
Cantitruncated order-6 cubic honeycomb verf.png H3 634-0111.png
28 런커런티드 오더-4 육각형
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
t0,1,3{6,3,4}
(1)
CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
Small rhombicuboctahedron.png
(3.4.4.4)
(1)
CDel node 1.pngCDel 2.pngCDel node.pngCDel 4.pngCDel node 1.png
Tetragonal prism.png
(4.4.4)
(2)
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 2.pngCDel node 1.png
Dodecagonal prism.png
(4.4.12)
(1)
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform tiling 63-t01.png
(3.12.12)
Runcitruncated order-4 hexagonal tiling honeycomb verf.png H3 634-1101.png
29 6인치
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png
t0,1,3{4,3,6}
(1)
CDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Truncated hexahedron.png
(3.8.8)
(2)
CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Octagonal prism.png
(4.4.8)
(1)
CDel node 1.pngCDel 6.pngCDel node.pngCDel 2.pngCDel node 1.png
Hexagonal prism.png
(4.4.6)
(1)
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.png
Uniform tiling 63-t02.png
(3.4.6.4)
Runcitruncated order-6 cubic honeycomb verf.png H3 634-1011.png
30 전분산 오더-6 입방체
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png
t0,1,2,3{6,3,4}
(1)
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Great rhombicuboctahedron.png
(4.6.8)
(1)
CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Octagonal prism.png
(4.4.8)
(1)
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 2.pngCDel node 1.png
Dodecagonal prism.png
(4.4.12)
(1)
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Uniform tiling 63-t012.svg
(4.6.12)
Omnitruncated order-4 hexagonal tiling honeycomb verf.png H3 634-1111.png
대식식
#
콕시터 다이어그램
슐레플리 기호
꼭지점당 위치 및 카운트별 셀
0
CDel node n2.pngCDel 3.pngCDel node n3.pngCDel 4.pngCDel node n4.png
1
CDel node n1.pngCDel 2.pngCDel node n3.pngCDel 4.pngCDel node n4.png
2
CDel node n1.pngCDel 6.pngCDel node n2.pngCDel 2.pngCDel node n4.png
3
CDel node n1.pngCDel 6.pngCDel node n2.pngCDel 3.pngCDel node n3.png
알트
[87] 교번 오더-6 입방체
CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 6.pngCDel node.png
h{4,3,6}
Tetrahedron.png CDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h1.png
(3.3.3)
Uniform tiling 63-t2.png CDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
(3.3.3.3.3.3)
CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform tiling 63-t1.png
(3.6.3.6)
[88] 캔틱 오더-6 입방체
CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node.pngCDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 6.pngCDel node.png
h2{4,3,6}
(2)
Truncated tetrahedron.png
(3.6.6)
- - (1)
Uniform tiling 63-t1.png
(3.6.3.6)
(2)
Uniform tiling 63-t12.png
(6.6.6)
Cantic order-6 cubic honeycomb verf.png
[89] 런치 오더-6 입방체
CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node 1.pngCDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 6.pngCDel node 1.png
h3{4,3,6}
(1)
Tetrahedron.png
(3.3.3)
- - (1)
Uniform tiling 63-t0.png
(6.6.6)
(3)
Uniform tiling 63-t02.png
(3.4.6.4)
Runcic order-6 cubic honeycomb verf.png
[90] 런시코틱 오더-6 입방체
CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node 1.pngCDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 6.pngCDel node 1.png
h2,3{4,3,6}
(1)
Truncated tetrahedron.png
(3.6.6)
- - (1)
Uniform tiling 63-t01.png
(3.12.12)
(2)
Uniform tiling 63-t012.svg
(4.6.12)
Runcicantic order-6 cubic honeycomb verf.png
[141] 순서-4 육각형
CDel node h1.pngCDel 6.pngCDel node g.pngCDel 3sg.pngCDel node g.pngCDel 4g.pngCDel node g.pngCDel branch 10ru.pngCDel split2.pngCDel node.pngCDel 4.pngCDel node h0.pngCDel node.pngCDel split1.pngCDel branch 10luru.pngCDel split2.pngCDel node.png
h{6,3,4}
- - Uniform tiling 333-t0.png
(3.3.3.3.3.3)
Uniform polyhedron-43-t2.png
(3.3.3.3)
Uniform polyhedron-43-t12.png CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
(4.6.6)
[142]
CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node h0.pngCDel branch 10ru.pngCDel split2.pngCDel node 1.pngCDel 4.pngCDel node h0.pngCDel node 1.pngCDel split1.pngCDel branch 10luru.pngCDel split2.pngCDel node 1.png
h1{6,3,4}
(1)
Uniform polyhedron-43-t1.png
(3.4.3.4)
- (2)
Uniform tiling 333-t01.png
(3.6.3.6)
(2)
Uniform polyhedron-43-t12.png
(4.6.6)
Cantic order-4 hexagonal tiling honeycomb verf.png
[143] 런치 순서-4 육각형
CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel branch 10ru.pngCDel split2.pngCDel node.pngCDel 4.pngCDel node 1.png
h3{6,3,4}
(1)
Uniform polyhedron-43-t0.png
(4.4.4)
(1)
Triangular prism.png
(4.4.3)
(1)
Uniform tiling 333-t0.png
(3.3.3.3.3.3)
(3)
Uniform polyhedron-43-t02.png
(3.4.4.4)
Runcic order-4 hexagonal tiling honeycomb verf.png
[144] 런코코틱 순서-4 육각형
CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel branch 10ru.pngCDel split2.pngCDel node 1.pngCDel 4.pngCDel node 1.png
h2,3{6,3,4}
(1)
Uniform polyhedron-43-t01.png
(3.8.8)
(1)
Triangular prism.png
(4.4.3)
(1)
Uniform tiling 333-t01.png
(3.6.3.6)
(2)
Uniform polyhedron-43-t012.png
(4.6.8)
Runcicantic order-4 hexagonal tiling honeycomb verf.png
[151] 4분의 1 순서-4 육각형
CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h1.pngCDel node 1.pngCDel split1.pngCDel branch 10luru.pngCDel split2.pngCDel node.png
q{6,3,4}
(3)
Uniform polyhedron-33-t01.png
(1)
Uniform polyhedron-33-t0.png
- (1)
Uniform tiling 333-t0.png
(3)
Uniform tiling 333-t02.png
Paracompact honeycomb DP3 1100 verf.png
일일요 비스눕 순서-6 입방체
CDel node h0.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node h0.pngCDel node h.pngCDel split1.pngCDel branch hh.pngCDel split2.pngCDel node h.png
2s{4,3,6}
CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node.png
Uniform polyhedron-43-h01.svg
(3.3.3.3.3.3)
- - CDel node.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.png
Uniform tiling 63-h12.png
(3.3.3.3.6)
Tetrahedron.png
+(3.3.3)
Alternated bitruncated order-4 hexagonal tiling honeycomb vertex figure.png
일일요 런치 비스눕 순서-6 입방체
CDel node 1.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node 1.png
CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node 1.png CDel node 1.pngCDel 2.pngCDel node h.pngCDel 4.pngCDel node 1.png CDel node 1.pngCDel 6.pngCDel node h.pngCDel 2.pngCDel node 1.png CDel node 1.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.png
일일요 스너브 정류 순서 6입방체
CDel node h0.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node h.pngCDel branch hh.pngCDel split2.pngCDel node h.pngCDel 4.pngCDel node h.png
sr{4,3,6}
CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node.png
Snub hexahedron.png
(3.3.3.3.3)
CDel node h.pngCDel 2x.pngCDel node h.pngCDel 4.pngCDel node.png
Tetrahedron.png
(3.3.3)
CDel node.pngCDel 6.pngCDel node h.pngCDel 2x.pngCDel node h.png
Trigonal antiprism.png
(3.3.3.4)
CDel node.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.png
Uniform tiling 63-snub.png
(3.3.3.3.6)
Tetrahedron.png
+(3.3.3)
일일요 6입방런cic snub 수리가능서-6입방체
CDel node 1.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node h.png
sr3{4,3,6}
CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node h.png CDel node 1.pngCDel 2.pngCDel node h.pngCDel 4.pngCDel node h.png CDel node 1.pngCDel 6.pngCDel node h.pngCDel 2x.pngCDel node h.png CDel node 1.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.png
일일요 스너브 정류 순서-4 육각형
CDel node h.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node h0.pngCDel node h.pngCDel 6.pngCDel node h.pngCDel split1.pngCDel nodes hh.png
sr{6,3,4}
CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node.png
Uniform polyhedron-43-h01.svg
(3.3.3.3.3.3)
CDel node h.pngCDel 2x.pngCDel node h.pngCDel 4.pngCDel node.png
Tetrahedron.png
(3.3.3)
- CDel node h.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.png
Uniform tiling 63-snub.png
(3.3.3.3.6)
Tetrahedron.png
+(3.3.3)
일일요 런시니럽 정류 순서-4 육각형
CDel node h.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node 1.png
sr3{6,3,4}
일일요 수정 주문서 6입방 입방체
CDel node h.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node h.png
ht0,1,2,3{6,3,4}
CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node h.png
Snub hexahedron.png
(3.3.3.3.4)
CDel node h.pngCDel 2x.pngCDel node h.pngCDel 4.pngCDel node h.png
Square antiprism.png
(3.3.3.4)
CDel node h.pngCDel 6.pngCDel node h.pngCDel 2x.pngCDel node h.png
Hexagonal antiprism.png
(3.3.3.6)
CDel node h.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.png
Uniform tiling 63-snub.png
(3.3.3.3.6)
Tetrahedron.png
+(3.3.3)

[6,3,5]가족

# 이름 이름
콕시터 다이어그램
슐레플리 기호

(각 꼭지점 주위로 카운트)
0
CDel node n2.pngCDel 3.pngCDel node n3.pngCDel 5.pngCDel node n5.png
1
CDel node n1.pngCDel 2.pngCDel node n3.pngCDel 5.pngCDel node n5.png
2
CDel node n1.pngCDel 6.pngCDel node n2.pngCDel 2.pngCDel node n5.png
3
CDel node n1.pngCDel 6.pngCDel node n2.pngCDel 3.pngCDel node n3.png
31 육각형
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
{6,3,5}
- - - (20)
Uniform tiling 63-t0.png
(6)3
Order-5 hexagonal tiling honeycomb verf.png CDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
이코사헤드론
H3 635 FC boundary.png
32 수정이능정 육각형서-5 육각형
CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
t1{6,3,5} 또는 r{6,3,5}
(2)
Uniform polyhedron-53-t2.png
(3.3.3.3.3)
- - (5)
Uniform tiling 63-t1.png
(3.6)2
Rectified order-5 hexagonal tiling honeycomb verf.png CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 5.pngCDel node.png
(5.4.4)
H3 635 boundary 0100.png
33
CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node.png
t1{5,3,6} 또는 r{5,3,6}
(5)
Uniform polyhedron-53-t1.png
(3.5.3.5)
- - (2)
Uniform tiling 63-t2.png
(3)6
Rectified order-6 dodecahedral honeycomb verf.png CDel node.pngCDel 6.pngCDel node 1.pngCDel 2.pngCDel node 1.png
(6.4.4)
H3 536 CC center 0100.png
34 도라면면
CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node 1.png
{5,3,6}
Uniform polyhedron-53-t0.png
(5.5.5)
- - - (∞)
Uniform tiling 63-t2.pngCDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.png
(3)6
H3 536 CC center.png
35 순서-5 육각형
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
t0,1{6,3,5} 또는 t{6,3,5}
(1)
Uniform polyhedron-53-t2.png
(3.3.3.3.3)
- - (5)
Uniform tiling 63-t01.png
3.12.12
Truncated order-5 hexagonal tiling honeycomb verf.png H3 635-1100.png
36 알 수 있는 순서-5 육각형
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node.png
t0,2{6,3,5} 또는 rr{6,3,5}
(1)
Uniform polyhedron-53-t1.png
(3.5.3.5)
(2)
Pentagonal prism.png
(5.4.4)
- (2)
Uniform tiling 63-t02.png
3.4.6.4
Cantellated order-5 hexagonal tiling honeycomb verf.png H3 635-1010.png
37 도도면
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node 1.png
t0,3{6,3,5}
(1)
Uniform polyhedron-53-t0.png
(5.5.5)
- (6)
Hexagonal prism.png
(6.4.4)
(1)
Uniform tiling 63-t0.png
(6)3
Runcinated order-5 hexagonal tiling honeycomb verf.png H3 635-1001.png
38 수 있는 6 도도면
CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node 1.png
t0,2{5,3,6} 또는 rr{5,3,6}
(2)
Uniform polyhedron-53-t02.png
(4.3.4.5)
- (2)
Hexagonal prism.png
(6.4.4)
(1)
Uniform tiling 63-t1.png
(3.6)2
Cantellated order-6 dodecahedral honeycomb verf.png H3 635-0101.png
39 순서-6 도도면
CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node.png
t1,2{6,3,5} 또는 2t{6,3,5}
(2)
Uniform polyhedron-53-t12.png
(5.6.6)
- - (2)
Uniform tiling 63-t12.png
(6)3
Bitruncated order-5 hexagonal tiling honeycomb verf.png H3 635-0110.png
40
CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node 1.png
t0,1{5,3,6} 또는 t{5,3,6}
(6)
Uniform polyhedron-53-t01.png
(3.10.10)
- - (1)
Uniform tiling 63-t2.png
(3)6
Truncated order-6 dodecahedral honeycomb verf.png H3 635-0011.png
41 오더-5 육각형
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node.png
t0,1,2{6,3,5} 또는 tr{6,3,5}
(1)
Uniform polyhedron-53-t12.png
(5.6.6)
(1)
Pentagonal prism.png
(5.4.4)
- (2)
Uniform tiling 63-t012.svg
4.6.10
Cantitruncated order-5 hexagonal tiling honeycomb verf.png H3 635-1110.png
42 런커런티드 오더-5 육각형
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node 1.png
t0,1,3{6,3,5}
(1)
Uniform polyhedron-53-t02.png
(4.3.4.5)
(1)
Pentagonal prism.png
(5.4.4)
(2)
Dodecagonal prism.png
(12.4.4)
(1)
Uniform tiling 63-t01.png
3.12.12
Runcitruncated order-5 hexagonal tiling honeycomb verf.png H3 635-1101.png
43 리리 6 도도면
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node 1.png
t0,1,3{5,3,6}
(1)
Uniform polyhedron-53-t01.png
(3.10.10)
(1)
Decagonal prism.png
(10.4.4)
(2)
Hexagonal prism.png
(6.4.4)
(1)
Uniform tiling 63-t02.png
3.4.6.4
Runcitruncated order-6 dodecahedral honeycomb verf.png H3 635-1011.png
44 캔트런으로 갈린 순서-6 도데카헤드랄
CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node 1.png
t0,1,2{5,3,6} 또는 tr{5,3,6}
(1)
Uniform polyhedron-53-t012.png
(4.6.10)
- (2)
Hexagonal prism.png
(6.4.4)
(1)
Uniform tiling 63-t12.png
(6)3
Cantitruncated order-6 dodecahedral honeycomb verf.png H3 635-0111.png
45 도 6도면도
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node 1.png
t0,1,2,3{6,3,5}
(1)
Uniform polyhedron-53-t012.png
(4.6.10)
(1)
Decagonal prism.png
(10.4.4)
(1)
Dodecagonal prism.png
(12.4.4)
(1)
Uniform tiling 63-t012.svg
4.6.12
Omnitruncated order-5 hexagonal tiling honeycomb verf.png H3 635-1111.png
대식식
# 이름 이름
콕시터 다이어그램
슐레플리 기호

(각 꼭지점 주위로 카운트)
0
CDel node n2.pngCDel 3.pngCDel node n3.pngCDel 5.pngCDel node n5.png
1
CDel node n1.pngCDel 2.pngCDel node n3.pngCDel 5.pngCDel node n5.png
2
CDel node n1.pngCDel 6.pngCDel node n2.pngCDel 2.pngCDel node n5.png
3
CDel node n1.pngCDel 6.pngCDel node n2.pngCDel 3.pngCDel node n3.png
알트
[145] 순서-5 육각형
CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.pngCDel branch 10ru.pngCDel split2.pngCDel node.pngCDel 5.pngCDel node.png
h{6,3,5}
- - - (20)
Uniform tiling 333-t1.png
(3)6
(12)
Icosahedron.png
(3)5
Uniform polyhedron-53-t12.png CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.png
(5.6.6)
[146] 캔틱 순서-5 육각형
CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node.pngCDel branch 10ru.pngCDel split2.pngCDel node 1.pngCDel 5.pngCDel node.png
h2{6,3,5}
(1)
Uniform polyhedron-53-t1.png
(3.5.3.5)
- (2)
Uniform tiling 333-t01.png
(3.6.3.6)
(2)
Uniform polyhedron-53-t12.png
(5.6.6)
Cantic order-5 hexagonal tiling honeycomb verf.png
[147] 런치 오더-5 육각형
CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node 1.pngCDel branch 10ru.pngCDel split2.pngCDel node.pngCDel 5.pngCDel node 1.png
h3{6,3,5}
(1)
Uniform polyhedron-53-t0.png
(5.5.5)
(1)
Triangular prism.png
(4.4.3)
(1)
Uniform tiling 333-t0.png
(3.3.3.3.3.3)
(3)
Uniform polyhedron-53-t02.png
(3.4.5.4)
Runcic order-5 hexagonal tiling honeycomb verf.png
[148] 런코코틱 오더-5 육각형
CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node 1.pngCDel branch 10ru.pngCDel split2.pngCDel node 1.pngCDel 5.pngCDel node 1.png
h2,3{6,3,5}
(1)
Uniform polyhedron-53-t01.png
(3.10.10)
(1)
Triangular prism.png
(4.4.3)
(1)
Uniform tiling 333-t01.png
(3.6.3.6)
(2)
Uniform polyhedron-53-t012.png
(4.6.10)
Runcicantic order-5 hexagonal tiling honeycomb verf.png
일일요 스너브 수정 순서-6 도치형
CDel node h0.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 5.pngCDel node h.pngCDel branch hh.pngCDel split2.pngCDel node h.pngCDel 5.pngCDel node h.png
sr{5,3,6}
Uniform polyhedron-53-s012.png
(3.3.5.3.5)
CDel node h.pngCDel 3.pngCDel node h.pngCDel 5.pngCDel node h.png
- Trigonal antiprism.png
(3.3.3.3)
CDel node.pngCDel 6.pngCDel node h.pngCDel 2x.pngCDel node h.png
Uniform tiling 63-h12.png
(3.3.3.3.3.3)
CDel node.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.png
Uniform polyhedron-33-t0.png
관개하다
일일요 옴니스너브 순서-5 육각형
CDel node h.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 5.pngCDel node h.png
ht0,1,2,3{6,3,5}
Uniform polyhedron-53-s012.png
(3.3.5.3.5)
CDel node h.pngCDel 3.pngCDel node h.pngCDel 5.pngCDel node h.png
Pentagonal antiprism.png
(3.3.3.5)
CDel node h.pngCDel 2x.pngCDel node h.pngCDel 5.pngCDel node h.png
Hexagonal antiprism.png
(3.3.3.6)
CDel node h.pngCDel 6.pngCDel node h.pngCDel 2x.pngCDel node h.png
Uniform tiling 63-snub.png
(3.3.6.3.6)
CDel node h.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.png
Uniform polyhedron-33-t0.png
관개하다

[6,3,6]가족

Coxeter 그룹의 링 순열에 의해 생성되는 9가지 형태가 있다. [6,3,6] 또는

#
콕시터 다이어그램
슐레플리 기호
꼭지점당 위치 및 카운트별 셀
0
CDel node n2.pngCDel 3.pngCDel node n3.pngCDel 6.pngCDel node n4.png
1
CDel node n1.pngCDel 2.pngCDel node n3.pngCDel 6.pngCDel node n4.png
2
CDel node n1.pngCDel 6.pngCDel node n3.pngCDel 2.pngCDel node n4.png
3
CDel node n1.pngCDel 6.pngCDel node n2.pngCDel 3.pngCDel node n3.png
46 오더-6 육각형
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
{6,3,6}
- - - (20)
Uniform tiling 63-t0.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
(6.6.6)
Uniform tiling 63-t2.png CDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
(3.3.3.3.3.3)
H3 636 FC boundary.png
47 정류서-6 육각형
CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
t1{6,3,6} 또는 r{6,3,6}
(2)
Uniform tiling 63-t2.pngCDel node 1.pngCDel 2.pngCDel node 1.pngCDel 6.pngCDel node.png
(3.3.3.3.3.3)
- - (6)
Uniform tiling 63-t1.png
(3.6.3.6)
Rectified order-6 hexagonal tiling honeycomb verf.png CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 6.pngCDel node.png
(6.4.4)
H3 636 boundary 0100.png
48 순서-6 육각형
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
t0,1{6,3,6} 또는 t{6,3,6}
(1)
Uniform tiling 63-t2.png
(3.3.3.3.3.3)
- - (6)
Uniform tiling 63-t01.png
(3.12.12)
Truncated order-6 hexagonal tiling honeycomb verf.png H3 636-1100.png
49 알 수 있는 순서-6 육각형
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node.png
t0,2{6,3,6} 또는 rr{6,3,6}
(1)
Uniform tiling 63-t1.png
(3.6.3.6)
(2)
Hexagonal prism.png
(4.4.6)
- (2)
Uniform tiling 63-t012.svg
(3.6.4.6)
Cantellated order-6 hexagonal tiling honeycomb verf.png H3 636-1010.png
50 런케이티드 오더-6 육각형
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node 1.png
t0,3{6,3,6}
(1)
Uniform tiling 63-t0.png
(6.6.6)
(3)
Hexagonal prism.png
(4.4.6)
(3)
Hexagonal prism.png
(4.4.6)
(1)
Uniform tiling 63-t0.png
(6.6.6)
Runcinated order-6 hexagonal tiling honeycomb verf.png H3 636-1001.png
51 오더-6 육각형
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node.png
t0,1,2{6,3,6} 또는 tr{6,3,6}
(1)
Uniform tiling 63-t12.png
(6.6.6)
(1)
Hexagonal prism.png
(4.4.6)
- (2)
Uniform tiling 63-t012.svg
(4.6.12)
Cantitruncated order-6 hexagonal tiling honeycomb verf.png H3 636-1110.png
52 런커런티드 오더-6 육각형
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node 1.png
t0,1,3{6,3,6}
(1)
Uniform tiling 63-t012.svg
(3.6.4.6)
(1)
Hexagonal prism.png
(4.4.6)
(2)
Decagonal prism.png
(4.4.12)
(1)
Uniform tiling 63-t01.png
(3.12.12)
Runcitruncated order-6 hexagonal tiling honeycomb verf.png H3 636-1011.png
53 순서-6 육각형
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node 1.png
t0,1,2,3{6,3,6}
(1)
Uniform tiling 63-t012.svg
(4.6.12)
(1)
Decagonal prism.png
(4.4.12)
(1)
Decagonal prism.png
(4.4.12)
(1)
Uniform tiling 63-t012.svg
(4.6.12)
Omnitruncated order-6 hexagonal tiling honeycomb verf.png H3 636-1111.png
[1] 육각bitrunculated order-6 육각형
CDel node h0.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node h0.pngCDel node 1.pngCDel 6.pngCDel node g.pngCDel 3sg.pngCDel node g.pngCDel 3g.pngCDel node g.pngCDel branch 11.pngCDel splitcross.pngCDel branch 11.png
t1,2{6,3,6} 또는 2t{6,3,6}
(2)
Uniform tiling 63-t12.png
(6.6.6)
- - (2)
Uniform tiling 63-t12.png
(6.6.6)
Bitruncated order-6 hexagonal tiling honeycomb verf.png H3 636-0110.png
대식식
#
콕시터 다이어그램
슐레플리 기호
꼭지점당 위치 및 카운트별 셀
0
CDel node n2.pngCDel 3.pngCDel node n3.pngCDel 6.pngCDel node n4.png
1
CDel node n1.pngCDel 2.pngCDel node n3.pngCDel 6.pngCDel node n4.png
2
CDel node n1.pngCDel 6.pngCDel node n3.pngCDel 2.pngCDel node n4.png
3
CDel node n1.pngCDel 6.pngCDel node n2.pngCDel 3.pngCDel node n3.png
알트
[47] 정류서-6 육각형
CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node h1.pngCDel node.pngCDel splitsplit1.pngCDel branch4 11.pngCDel splitsplit2.pngCDel node.pngCDel node h0.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node h0.png
q{6,3,6} = r{6,3,6}
(2)
Uniform tiling 63-t2.pngCDel node 1.pngCDel 2.pngCDel node 1.pngCDel 6.pngCDel node.png
(3.3.3.3.3.3)
- - (6)
Uniform tiling 63-t1.png
(3.6.3.6)
Rectified order-6 hexagonal tiling honeycomb verf.png CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 6.pngCDel node.png
(6.4.4)
H3 636 boundary 0100.png
[54] 삼각형의
(CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel branch 10ru.pngCDel split2.pngCDel node.pngCDel 6.pngCDel node.png) = CDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png
h{6,3} = {3,6,3}
- - - CDel node h.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png
Uniform tiling 333-t0.png
(3.3.3.3.3.3)
CDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
Uniform tiling 63-t2.png
(3.3.3.3.3.3)
Uniform tiling 63-t0.png CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png
{6,3}
H3 363 FC boundary.png
[55] 캔틱 순서-6 육각형
( CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node.pngCDel branch 10ru.pngCDel split2.pngCDel node 1.pngCDel 6.pngCDel node.png) = CDel node.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png
h2{6,3,6} = r{3,6,3}
(1)
Uniform tiling 63-t1.png
(3.6.3.6)
- (2)
Uniform tiling 63-t12.png
(6.6.6)
(2)
Uniform tiling 333-t01.png
(3.6.3.6)
Cantic order-6 hexagonal tiling honeycomb verf.png H3 363 boundary 0100.png
[149] 런치 오더-6 육각형
CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node 1.pngCDel branch 10ru.pngCDel split2.pngCDel node.pngCDel 6.pngCDel node 1.png
h3{6,3,6}
(1)
Uniform tiling 63-t0.png
(6.6.6)
(1)
Triangular prism.png
(4.4.3)
(3)
Uniform tiling 63-t02.png
(3.4.6.4)
(1)
Uniform tiling 333-t0.png
(3.3.3.3.3.3)
Runcic order-6 hexagonal tiling honeycomb verf.png
[150] 런코코틱 오더-6 육각형
CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node 1.pngCDel branch 10ru.pngCDel split2.pngCDel node 1.pngCDel 6.pngCDel node 1.png
h2,3{6,3,6}
(1)
Uniform tiling 63-t01.png
(3.12.12)
(1)
Triangular prism.png
(4.4.3)
(2)
Uniform tiling 63-t012.svg
(4.6.12)
(1)
Uniform tiling 333-t01.png
(3.6.3.6)
Runcicantic order-6 hexagonal tiling honeycomb verf.png
[137]
(CDel node h0.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node h0.pngCDel node h1.pngCDel 6.pngCDel node g.pngCDel 3sg.pngCDel node g.pngCDel 3g.pngCDel node g.pngCDel branch hh.pngCDel splitcross.pngCDel branch hh.png) = CDel branch 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.png
= 2s{6,3,6} = h{6,3}
CDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node.png
Uniform tiling 63-h12.png
(3.3.3.3.6)
- - CDel node.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.png
Uniform tiling 63-h12.png
(3.3.3.3.6)
Tetrahedron.png
+(3.3.3)
Uniform polyhedron-33-t01.png CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
(3.6.6)
일일요 스너브 정류 순서-6 육각형
CDel node h.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node.png
sr{6,3,6}
CDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node.png
Uniform tiling 63-h12.png
(3.3.3.3.3.3)
CDel node h.pngCDel 2x.pngCDel node h.pngCDel 6.pngCDel node.png
Trigonal antiprism.png
(3.3.3.3)
- CDel node h.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.png
Uniform tiling 63-snub.png
(3.3.3.3.6)
Tetrahedron.png
+(3.3.3)
일일요 런케인드 오더-6 육각형
CDel node h.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node h.png
ht0,3{6,3,6}
CDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node h.png
Uniform tiling 333-t0.png
(3.3.3.3.3.3)
CDel node.pngCDel 6.pngCDel node h.pngCDel 2x.pngCDel node h.png
Trigonal antiprism.png
(3.3.3.3)
CDel node.pngCDel 6.pngCDel node h.pngCDel 2x.pngCDel node h.png
Trigonal antiprism.png
(3.3.3.3)
CDel node h.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png
Uniform tiling 333-t0.png
(3.3.3.3.3.3)
Tetrahedron.png
+(3.3.3)
일일요 옴니스너브 순서-6 육각형
CDel node h.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node h.png
ht0,1,2,3{6,3,6}
CDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node h.png
Uniform tiling 63-snub.png
(3.3.3.3.6)
CDel node h.pngCDel 2x.pngCDel node h.pngCDel 6.pngCDel node h.png
Hexagonal antiprism.png
(3.3.3.6)
CDel node h.pngCDel 6.pngCDel node h.pngCDel 2x.pngCDel node h.png
Hexagonal antiprism.png
(3.3.3.6)
CDel node h.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.png
Uniform tiling 63-snub.png
(3.3.3.3.6)
Tetrahedron.png
+(3.3.3)

[3,6,3]가족

Coxeter 그룹의 링 순열에 의해 생성되는 9가지 형태가 있다. [3,6,3] 또는

# 이름 이름
콕시터 다이어그램
슐래플리 기호
셀 카운트/버텍스
그리고 벌집 안의 위치들
0
CDel node n2.pngCDel 6.pngCDel node n3.pngCDel 3.pngCDel node n4.png
1
CDel node n1.pngCDel 2.pngCDel node n3.pngCDel 3.pngCDel node n4.png
2
CDel node n1.pngCDel 3.pngCDel node n2.pngCDel 2.pngCDel node n4.png
3
CDel node n1.pngCDel 3.pngCDel node n2.pngCDel 6.pngCDel node n3.png
54 삼각형의
CDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png
{3,6,3}
- - - (∞)
Uniform tiling 63-t2.png
{3,6}
Uniform tiling 63-t0.png CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png
{6,3}
H3 363 FC boundary.png
55 된 삼각형
CDel node.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png
t1{3,6,3} 또는 r{3,6,3}
(2)
Uniform tiling 63-t0.png
(6)3
- - (3)
Uniform tiling 63-t1.png
(3.6)2
Rectified triangular tiling honeycomb verf.png
(3.4.4)
H3 363 boundary 0100.png
56 세모꼴로 알 수 있는
CDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.png
t0,2{3,6,3} 또는 rr{3,6,3}
(1)
Uniform tiling 63-t1.png
(3.6)2
(2)
Triangular prism.png
(4.4.3)
- (2)
Uniform tiling 63-t02.png
(3.6.4.6)
Cantellated triangular tiling honeycomb verf.png H3 363-1010.png
57 삼각으로 장식한 삼각형
CDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.png
t0,3{3,6,3}
(1)
Uniform tiling 63-t2.png
(3)6
(6)
Triangular prism.png
(4.4.3)
(6)
Triangular prism.png
(4.4.3)
(1)
Uniform tiling 63-t2.png
(3)6
Runcinated triangular tiling honeycomb verf.png H3 363-1001.png
58 세모꼴로 갈라진
CDel node.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.png
t1,2{3,6,3} 또는 2t{3,6,3}
(2)
Uniform tiling 63-t01.png
(3.12.12)
- - (2)
Uniform tiling 63-t01.png
(3.12.12)
Bitruncated triangular tiling honeycomb verf.png H3 363-0110.png
59 세모꼴로 된 칸트런
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.png
t0,1,2{3,6,3} 또는 tr{3,6,3}
(1)
Uniform tiling 63-t01.png
(3.12.12)
(1)
Triangular prism.png
(4.4.3)
- (2)
Uniform tiling 63-t012.svg
(4.6.12)
Cantitruncated triangular tiling honeycomb verf.png H3 363-1110.png
60 삼각형으로 늘어뜨린
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.png
t0,1,3{3,6,3}
(1)
Uniform tiling 63-t02.png
(3.6.4.6)
(1)
Triangular prism.png
(4.4.3)
(2)
Hexagonal prism.png
(4.4.6)
(1)
Uniform tiling 63-t01.png
(6)3
Runcitruncated triangular tiling honeycomb verf.png H3 363-1101.png
61 삼각형
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.png
t0,1,2,3{3,6,3}
(1)
Uniform tiling 63-t012.svg
(4.6.12)
(1)
Hexagonal prism.png
(4.4.6)
(1)
Hexagonal prism.png
(4.4.6)
(1)
Uniform tiling 63-t012.svg
(4.6.12)
Omnitruncated triangular tiling honeycomb verf.png H3 363-1111.png
[1] 삼각형
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node g.pngCDel 3sg.pngCDel node g.pngCDel node 1.pngCDel 6.pngCDel node g.pngCDel 3sg.pngCDel node g.pngCDel 3g.pngCDel node g.pngCDel branch 11.pngCDel splitcross.pngCDel branch 11.png
t0,1{3,6,3} 또는 t{3,6,3} = {6,3,3}
(1)
Uniform tiling 63-t0.png
(6)3
- - (3)
Uniform tiling 63-t12.png
(6)3
Truncated triangular tiling honeycomb verf.png CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
{3,3}
H3 363-1100.png
대식식
# 이름 이름
콕시터 다이어그램
슐래플리 기호
셀 카운트/버텍스
그리고 벌집 안의 위치들
0
CDel node n2.pngCDel 6.pngCDel node n3.pngCDel 3.pngCDel node n4.png
1
CDel node n1.pngCDel 2.pngCDel node n3.pngCDel 3.pngCDel node n4.png
2
CDel node n1.pngCDel 3.pngCDel node n2.pngCDel 2.pngCDel node n4.png
3
CDel node n1.pngCDel 3.pngCDel node n2.pngCDel 6.pngCDel node n3.png
알트
[56] 세모꼴로 알 수 있는
CDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.png = CDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.png
s2{3,6,3}
(1)
Uniform tiling 63-t1.png
(3.6)2
CDel node h.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.png
- - (2)
Rhombitrihexagonal tiling snub edge coloring.png
(3.6.4.6)
CDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node 1.png
Triangular prism.png
(3.4.4)
Cantellated triangular tiling honeycomb verf.png H3 363-1010.png
[60] 삼각형으로 늘어뜨린
CDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.png = CDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.png
s2,3{3,6,3}
(1)
Uniform tiling 333-t012.png
(6)3
CDel node h.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.png
- (1)
Triangular prism.png
(4.4.3)
CDel node h.pngCDel 3.pngCDel node h.pngCDel 2.pngCDel node 1.png
(1)
Rhombitrihexagonal tiling snub edge coloring.png
(3.6.4.6)
CDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node 1.png
(2)
Hexagonal prism.png
(4.4.6)
Runcitruncated triangular tiling honeycomb verf.png H3 363-1101.png
[137]
( CDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node g.pngCDel 3sg.pngCDel node g.pngCDel branch hh.pngCDel splitcross.pngCDel branch hh.png ) = (CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel branch 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.png)
s{3,6,3}
Uniform tiling 333-t1.png
(3)6
CDel node h.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png
- - Uniform tiling 63-h12.png
(3)6
CDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node.png
Tetrahedron.png
+(3)3
Uniform polyhedron-33-t01.png CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
(3.6.6)
스칼리폼 삼각형 모양의 런시스너브
CDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.png
s3{3,6,3}
Uniform tiling 333-t02.png
r{6,3}
CDel node h.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.png
- Triangular prism.png
(3.4.4)
CDel node h.pngCDel 3.pngCDel node h.pngCDel 2.pngCDel node 1.png
Uniform tiling 333-t1.png
(3)6
CDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node.png
Triangular cupola.png
트라이크업
통일형 삼각 타일링 벌집
CDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.png
ht0,1,2,3{3,6,3}
Uniform tiling 63-snub.png
(3.3.3.3.6)
CDel node h.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.png
Octahedron.png
(3)4
CDel node h.pngCDel 2x.pngCDel node h.pngCDel 3.pngCDel node h.png
Octahedron.png
(3)4
CDel node h.pngCDel 3.pngCDel node h.pngCDel 2x.pngCDel node h.png
Uniform tiling 63-snub.png
(3.3.3.3.6)
CDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node h.png
Tetrahedron.png
+(3)3

[4,4,3]가족

Coxeter 그룹의 링 순열에 의해 생성되는 15가지 형태가 있다: [4,4,3] 또는

# 벌집 이름
콕시터 다이어그램
슐래플리 기호
셀 카운트/버텍스
그리고 벌집 안의 위치들
정점수 사진
0
CDel node n2.pngCDel 4.pngCDel node n3.pngCDel 3.pngCDel node n4.png
1
CDel node n1.pngCDel 2.pngCDel node n3.pngCDel 3.pngCDel node n4.png
2
CDel node n1.pngCDel 4.pngCDel node n2.pngCDel 2.pngCDel node n4.png
3
CDel node n1.pngCDel 4.pngCDel node n2.pngCDel 4.pngCDel node n3.png
62 정사각형의
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png = CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
{4,4,3}
- - - (6)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
Uniform tiling 44-t0.svg
Square tiling honeycomb verf.png CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
큐브
H3 443 FC boundary.png
63 정사각형
CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png = CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
t1{4,4,3} 또는 r{4,4,3}
(2)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
Uniform polyhedron-43-t0.png
- - (3)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
Uniform tiling 44-t1.png
Rectified square tiling honeycomb verf.png
CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 3.pngCDel node.png
삼각 프리즘
H3 443 boundary 0100.png
64 수정 순서-4 팔면체
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
t1{3,4,4} 또는 r{3,4,4}
(4)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform polyhedron-43-t1.png
- - (2)
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png
Uniform tiling 44-t2.png
Rectified order-4 octahedral honeycomb verf.png H3 344 CC center 0100.png
65 order-4 팔면체
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
{3,4,4}
(∞)
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-43-t2.png
- - - Uniform tiling 44-t0.svg CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png H3 344 CC center.png
66 잘린 사각형
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png = CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
t0,1{4,4,3} or t{4,4,3}
(1)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
Uniform polyhedron-43-t0.png
- - (3)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
Uniform tiling 44-t01.png
Truncated square tiling honeycomb verf.png H3 443-1100.png
67 truncated order-4 octahedral
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
t0,1{3,4,4} or t{3,4,4}
(4)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-43-t12.png
- - (1)
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png
Uniform tiling 44-t2.png
Truncated order-4 octahedral honeycomb verf.png H3 443-0011.png
68 bitruncated square
CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
t1,2{4,4,3} or 2t{4,4,3}
(2)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform polyhedron-43-t01.png
- - (2)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Uniform tiling 44-t12.svg
Bitruncated square tiling honeycomb verf.png H3 443-0110.png
69 cantellated square
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
t0,2{4,4,3} or rr{4,4,3}
(1)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform polyhedron-43-t1.png
(2)
CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 3.pngCDel node.png
Triangular prism.png
- (2)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png
Uniform tiling 44-t02.png
Cantellated square tiling honeycomb verf.png H3 443-1010.png
70 cantellated order-4 octahedral
CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
t0,2{3,4,4} or rr{3,4,4}
(2)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-43-t02.png
- (2)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 2.pngCDel node 1.png
Tetragonal prism.png
(1)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
Uniform tiling 44-t1.png
Cantellated order-4 octahedral honeycomb verf.png H3 443-0101.png
71 runcinated square
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
t0,3{4,4,3}
(1)
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-43-t2.png
(3)
CDel node 1.pngCDel 2.pngCDel node.pngCDel 3.pngCDel node 1.png
Triangular prism.png
(3)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node 1.png
Tetragonal prism.png
(1)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
Uniform tiling 44-t0.svg
Runcinated square tiling honeycomb verf.png H3 443-1001.png
72 cantitruncated square
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
t0,1,2{4,4,3} or tr{4,4,3}
(1)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform polyhedron-43-t01.png
(1)
CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 3.pngCDel node.png
Triangular prism.png
- (2)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Uniform tiling 44-t012.png
Cantitruncated square tiling honeycomb verf.png H3 443-1110.png
73 cantitruncated order-4 octahedral
CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
t0,1,2{3,4,4} or tr{3,4,4}
(2)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-43-t012.png
- (1)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 2.pngCDel node 1.png
Tetragonal prism.png
(1)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Uniform tiling 44-t12.svg
Cantitruncated order-4 octahedral honeycomb verf.png H3 443-0111.png
74 runcitruncated square
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
t0,1,3{4,4,3}
(1)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-43-t02.png
(1)
CDel node 1.pngCDel 2.pngCDel node.pngCDel 3.pngCDel node 1.png
Triangular prism.png
(2)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 2.pngCDel node 1.png
Octagonal prism.png
(1)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
Uniform tiling 44-t01.png
Runcitruncated square tiling honeycomb verf.png H3 443-1101.png
75 runcitruncated order-4 octahedral
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
t0,1,3{3,4,4}
(1)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-43-t12.png
(2)
CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Hexagonal prism.png
(1)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node 1.png
Tetragonal prism.png
(1)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png
Uniform tiling 44-t02.png
Runcitruncated order-4 octahedral honeycomb verf.png H3 443-1011.png
76 omnitruncated square
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
t0,1,2,3{4,4,3}
(1)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-43-t012.png
(1)
CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Hexagonal prism.png
(1)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 2.pngCDel node 1.png
Octagonal prism.png
(1)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Uniform tiling 44-t012.png
Omnitruncated square tiling honeycomb verf.png H3 443-1111.png
Alternated forms
# Honeycomb name
Coxeter diagram
and Schläfli symbol
Cell counts/vertex
and positions in honeycomb
Vertex figure Picture
0
CDel node n2.pngCDel 4.pngCDel node n3.pngCDel 3.pngCDel node n4.png
1
CDel node n1.pngCDel 2.pngCDel node n3.pngCDel 3.pngCDel node n4.png
2
CDel node n1.pngCDel 4.pngCDel node n2.pngCDel 2.pngCDel node n4.png
3
CDel node n1.pngCDel 4.pngCDel node n2.pngCDel 4.pngCDel node n3.png
Alt
[83] alternated square
CDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel nodes 10ru.pngCDel split2-44.pngCDel node.pngCDel 3.pngCDel node.png
h{4,4,3}
- - - CDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png {4,3} Uniform polyhedron-43-t1.png
(4.3.4.3)
[84] cantic square
CDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel nodes 10ru.pngCDel split2-44.pngCDel node 1.pngCDel 3.pngCDel node.png
h2{4,4,3}
Uniform polyhedron-43-t1.png
(3.4.3.4)
- Uniform polyhedron-43-t01.png
(3.8.8)
Uniform tiling 44-t12.svg
(4.8.8)
Cantic square tiling honeycomb verf.png
[85] runcic square
CDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel nodes 10ru.pngCDel split2-44.pngCDel node.pngCDel 3.pngCDel node 1.png
h3{4,4,3}
Uniform polyhedron-43-t2.png
(3.3.3.3)
- Uniform polyhedron-43-t02.png
(3.4.4.4)
Uniform tiling 44-t0.svg
(4.4.4)
Runcic square tiling honeycomb verf.png
[86] runcicantic square
CDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel nodes 10ru.pngCDel split2-44.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-43-t12.png
(4.6.6)
- Uniform polyhedron-43-t012.png
(3.4.4.4)
Uniform tiling 44-t12.svg
(4.8.8)
Runcicantic square tiling honeycomb verf.png
Nonsimplectic alternated rectified square
CDel node.pngCDel 4.pngCDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel nodes 10.pngCDel 2a2b-cross.pngCDel nodes 10ru.pngCDel split2.pngCDel node.png
hr{4,4,3}
CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png - - CDel node.pngCDel 4.pngCDel node h1.pngCDel 4.pngCDel node.png {}x{3}
Scaliform snub order-4 octahedral
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png = CDel nodes.pngCDel split2-44.pngCDel node h.pngCDel 3.pngCDel node h.png = CDel node.pngCDel split1-44.pngCDel nodes hh.pngCDel split2.pngCDel node h.png
s{3,4,4}
CDel node.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png - - CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h.png {}v{4}
Scaliform runcisnub order-4 octahedral
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png
s3{3,4,4}
CDel node.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png CDel node 1.pngCDel 2.pngCDel node h.pngCDel 3.pngCDel node h.png CDel node 1.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node h.png CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h.png cup-4
152 snub square
CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png = CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node.png
s{4,4,3}
CDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
Tetrahedron.png
- - CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node.png
Uniform tiling 44-h01.png
{3,3} Alternated truncated order-3 square tiling honeycomb vertex figure.png
Nonuniform snub rectified order-4 octahedral
CDel node.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png
sr{3,4,4}
CDel node h.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png - CDel node.pngCDel 4.pngCDel node h.pngCDel 2x.pngCDel node h.png CDel node.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.png irr. {3,3}
Nonuniform alternated runcitruncated square
CDel node h.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png
ht0,1,3{3,4,4}
CDel node.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png CDel node h.pngCDel 2x.pngCDel node h.pngCDel 3.pngCDel node h.png CDel node.pngCDel 4.pngCDel node h.pngCDel 2x.pngCDel node h.png CDel node h.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h.png irr. {}v{4}
Nonuniform omnisnub square
CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png
ht0,1,2,3{4,4,3}
CDel node h.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png
Uniform polyhedron-43-s012.png
CDel node h.pngCDel 2x.pngCDel node h.pngCDel 3.pngCDel node h.png
Octahedron.png
CDel node h.pngCDel 4.pngCDel node h.pngCDel 2x.pngCDel node h.png
Square antiprism.png
CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.png
Uniform tiling 44-snub.png
irr. {3,3}

[4,4,4] family

There are 9 forms, generated by ring permutations of the Coxeter group: [4,4,4] or CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png.

# Honeycomb name
Coxeter diagram
and Schläfli symbol
Cell counts/vertex
and positions in honeycomb
Symmetry Vertex figure Picture
0
CDel node n2.pngCDel 4.pngCDel node n3.pngCDel 4.pngCDel node n4.png
1
CDel node n1.pngCDel 2.pngCDel node n3.pngCDel 4.pngCDel node n4.png
2
CDel node n1.pngCDel 4.pngCDel node n2.pngCDel 2.pngCDel node n4.png
3
CDel node n1.pngCDel 4.pngCDel node n2.pngCDel 4.pngCDel node n3.png
77 order-4 square
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
{4,4,4}
- - - CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
Uniform tiling 44-t0.svg
[4,4,4] CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
Hexahedron.png
Cube
H3 444 FC boundary.png
78 truncated order-4 square
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
t0,1{4,4,4} or t{4,4,4}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
Uniform tiling 44-t0.svg
- - CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
Uniform tiling 44-t01.png
[4,4,4] Truncated order-4 square tiling honeycomb verf.png H3 444-1100.png
79 bitruncated order-4 square
CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
t1,2{4,4,4} or 2t{4,4,4}
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
Uniform tiling 44-t01.png
- - CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Uniform tiling 44-t12.svg
[[4,4,4]] Bitruncated order-4 square tiling honeycomb verf.png H3 444-0110.png
80 runcinated order-4 square
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png
t0,3{4,4,4}
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png
Uniform tiling 44-t2.png
CDel node 1.pngCDel 2.pngCDel node.pngCDel 4.pngCDel node 1.png
Tetragonal prism.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node 1.png
Tetragonal prism.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
Uniform tiling 44-t0.svg
[[4,4,4]] Runcinated order-4 square tiling honeycomb verf.png H3 444-1001.png
81 runcitruncated order-4 square
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png
t0,1,3{4,4,4}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png
Uniform tiling 44-t02.png
CDel node 1.pngCDel 2.pngCDel node.pngCDel 4.pngCDel node 1.png
Tetragonal prism.png
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 2.pngCDel node 1.png
Octagonal prism.png
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
Uniform tiling 44-t01.png
[4,4,4] Runcitruncated order-4 square tiling honeycomb verf.png H3 444-1101.png
82 omnitruncated order-4 square
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.png
t0,1,2,3{4,4,4}
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Uniform tiling 44-t012.png
CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Octagonal prism.png
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 2.pngCDel node 1.png
Octagonal prism.png
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Uniform tiling 44-t012.png
[[4,4,4]] Omnitruncated order-4 square tiling honeycomb verf.png H3 444-1111.png
[62] square
CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h0.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node g.pngCDel 3sg.pngCDel node g.png
t1{4,4,4} or r{4,4,4}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
Uniform tiling 44-t0.svg
- - CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
Uniform tiling 44-t1.png
[4,4,4] Uniform tiling 44-t0.svg
Square tiling
H3 443 FC boundary.png
[63] rectified square
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node h0.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node g.pngCDel 3sg.pngCDel node g.png
t0,2{4,4,4} or rr{4,4,4}
CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
Uniform tiling 44-t1.png
CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 4.pngCDel node.png
Tetragonal prism.png
- CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png
Uniform tiling 44-t02.png
[4,4,4] Cantellated order-4 square tiling honeycomb verf.png H3 444-1010.png
[66] truncated order-4 square
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node h0.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node g.pngCDel 3sg.pngCDel node g.png
t0,1,2{4,4,4} or tr{4,4,4}
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
Uniform tiling 44-t01.png
CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 4.pngCDel node.png
Tetragonal prism.png
- CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Uniform tiling 44-t012.png
[4,4,4] Cantitruncated order-4 square tiling honeycomb verf.png H3 444-0111.png
Alternated constructions
# Honeycomb name
Coxeter diagram
and Schläfli symbol
Cell counts/vertex
and positions in honeycomb
Symmetry Vertex figure Picture
0
CDel node n2.pngCDel 4.pngCDel node n3.pngCDel 4.pngCDel node n4.png
1
CDel node n1.pngCDel 2.pngCDel node n3.pngCDel 4.pngCDel node n4.png
2
CDel node n1.pngCDel 4.pngCDel node n2.pngCDel 2.pngCDel node n4.png
3
CDel node n1.pngCDel 4.pngCDel node n2.pngCDel 4.pngCDel node n4.png
Alt
[62] Square
( CDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel nodes 10ru.pngCDel split2-44.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel nodes 11.pngCDel split2-44.pngCDel node.pngCDel 4.pngCDel node.pngCDel node h0.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png ) = CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
Uniform tiling 44-t0.svg
(4.4.4.4)
- - Uniform tiling 44-t1.png
(4.4.4.4)
[1+,4,4,4]
=[4,4,4]
Bitruncated order-4 square tiling honeycomb verf.png H3 443 FC boundary.png
[63] rectified square
CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png = CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
s2{4,4,4}
CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
Uniform tiling 44-t1.png
CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 4.pngCDel node.png
Tetragonal prism.png
- CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png
Uniform tiling 44-t02.png
[4+,4,4] Cantellated order-4 square tiling honeycomb verf.png H3 443 boundary 0100.png
[77] order-4 square
CDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel nodes 10ru.pngCDel split2-44.pngCDel node.pngCDel 4.pngCDel node.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel split1-44.pngCDel nodes.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h0.png
- - - CDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
Uniform tiling 44-t0.svg
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
Uniform tiling 44-t0.svg
[1+,4,4,4]
=[4,4,4]
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
Hexahedron.png
Cube
H3 444 FC boundary.png
[78] truncated order-4 square
CDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel nodes 10ru.pngCDel split2-44.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel split1-44.pngCDel nodes.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h0.png
Uniform tiling 44-t12.svg
(4.8.8)
- Uniform tiling 44-t12.svg
(4.8.8)
- Uniform tiling 44-t1.png
(4.4.4.4)
[1+,4,4,4]
=[4,4,4]
Truncated order-4 square tiling honeycomb verf.png H3 444-1100.png
[79] bitruncated order-4 square
CDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel nodes 10ru.pngCDel split2-44.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel nodes 11.pngCDel split2-44.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel node h0.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
Uniform tiling 44-t01.png
(4.8.8)
- - Uniform tiling 44-t01.png
(4.8.8)
Uniform tiling 44-t012.png
(4.8.8)
[1+,4,4,4]
=[4,4,4]
Bitruncated order-4 square tiling honeycomb verf.png H3 444-0110.png
[81] runcitruncated order-4 square tiling
CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.png = CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.png
s2,3{4,4,4}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png
Uniform tiling 44-t02.png
CDel node 1.pngCDel 2.pngCDel node.pngCDel 4.pngCDel node 1.png
Tetragonal prism.png
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 2.pngCDel node 1.png
Octagonal prism.png
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
Uniform tiling 44-t01.png
[4,4,4] Runcitruncated order-4 square tiling honeycomb verf.png H3 444-1101.png
[83] alternated square
( CDel node.pngCDel 4.pngCDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel node 1.pngCDel ultra.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel ultra.pngCDel node.png ) ↔ CDel nodes 10ru.pngCDel split2-44.pngCDel node.pngCDel 3.pngCDel node.png
hr{4,4,4}
CDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
Uniform tiling 44-t0.svg
- - CDel node.pngCDel 4.pngCDel node h1.pngCDel 4.pngCDel node.png
Uniform tiling 44-t1.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngHexahedron.png [4,1+,4,4] Uniform polyhedron-43-t1.png
(4.3.4.3)
[104] quarter order-4 square
CDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h1.pngCDel label4.pngCDel branch 11.pngCDel 4a4b.pngCDel branch.pngCDel label4.png
q{4,4,4}
[[1+,4,4,4,1+]]
=[[4[4]]]
Paracompact honeycomb 4444 1100 verf.png
153 alternated rectified square tiling
CDel node h.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h0.pngCDel node.pngCDel 4.pngCDel node h1.pngCDel 4.pngCDel node g.pngCDel 3sg.pngCDel node g.png
CDel node 1.pngCDel ultra.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel ultra.pngCDel node.png
hrr{4,4,4}
CDel node.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node.png
Uniform tiling 44-t1.png
CDel node h.pngCDel 2x.pngCDel node h.pngCDel 4.pngCDel node.png
Tetrahedron.png
- CDel node h.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h.png
Uniform tiling 44-t02.png
[((2+,4,4)),4]
154 alternated runcinated order-4 square tiling
CDel node h.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h.png
ht0,3{4,4,4}
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h1.png
Uniform tiling 44-t2.png
CDel node h.pngCDel 2.pngCDel node.pngCDel 4.pngCDel node h.png
Tetrahedron.png
CDel node.pngCDel 4.pngCDel node h.pngCDel 2x.pngCDel node h.png
Tetrahedron.png
CDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
Uniform tiling 44-t0.svg
[[(4,4,4,2+)]] Alternated runcinated order-4 square tiling honeycomb vertex figure.png
Scaliform snub order-4 square tiling
CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
s{4,4,4}
CDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
Uniform tiling 44-t0.svg
- - CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node.png
Uniform tiling 44-h01.png
[4+,4,4]
Nonuniform runcic snub order-4 square tiling
CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png
s3{4,4,4}
[4+,4,4]
Nonuniform bisnub order-4 square tiling
CDel node.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node.png
2s{4,4,4}
CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node.png
Uniform tiling 44-h01.png
- - CDel node.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.png
Uniform tiling 44-h01.png
[[4,4+,4]] Alternated bitruncated order-4 square tiling honeycomb vertex figure.png
[152] snub square tiling
CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h0.pngCDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node g.pngCDel 3sg.pngCDel node g.png
sr{4,4,4}
CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node.png
Uniform tiling 44-h01.png
CDel node h.pngCDel 2x.pngCDel node h.pngCDel 4.pngCDel node.png
Tetrahedron.png
- CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.png
Uniform tiling 44-snub.png
[(4,4)+,4] Alternated truncated order-3 square tiling honeycomb vertex figure.png
Nonuniform alternated runcitruncated order-4 square tiling
CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h.png
ht0,1,3{4,4,4}
CDel node h.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h.png
Uniform tiling 44-t02.png
CDel node h.pngCDel 2.pngCDel node.pngCDel 4.pngCDel node h.png
Tetrahedron.png
CDel node h.pngCDel 4.pngCDel node h.pngCDel 2x.pngCDel node h.png
Square antiprism.png
CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node.png
Uniform tiling 44-h01.png
[((2,4)+,4,4)]
Nonuniform omnisnub order-4 square tiling
CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.png
ht0,1,2,3{4,4,4}
CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.png
Uniform tiling 44-snub.png
CDel node h.pngCDel 2x.pngCDel node h.pngCDel 4.pngCDel node h.png
Square antiprism.png
CDel node h.pngCDel 4.pngCDel node h.pngCDel 2x.pngCDel node h.png
Square antiprism.png
CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.png
Uniform tiling 44-snub.png
[[4,4,4]]+

Tridental graphs

[3,41,1] family

There are 11 forms (of which only 4 are not shared with the [4,4,3] family), generated by ring permutations of the Coxeter group: CDel nodes.pngCDel split2-44.pngCDel node.pngCDel 3.pngCDel node.png

# Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
Vertex figure Picture
0
CDel nodea.pngCDel 4a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
1
CDel nodes.pngCDel 2.pngCDel node.png
0'
CDel nodea.pngCDel 4a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
3
CDel nodes.pngCDel split2-44.pngCDel node.png
83 alternated square
CDel nodes 10ru.pngCDel split2-44.pngCDel node.pngCDel 3.pngCDel node.pngCDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
- - Uniform polyhedron-43-t0.png
(4.4.4)
Uniform tiling 44-t0.svg
(4.4.4.4)
Uniform polyhedron-43-t1.png
(4.3.4.3)
84 cantic square
CDel nodes 10ru.pngCDel split2-44.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform polyhedron-43-t1.png
(3.4.3.4)
- Uniform polyhedron-43-t01.png
(3.8.8)
Uniform tiling 44-t12.svg
(4.8.8)
Cantic square tiling honeycomb verf.png
85 runcic square
CDel nodes 10ru.pngCDel split2-44.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-43-t2.png
(4.4.4.4)
- Uniform polyhedron-43-t02.png
(3.4.4.4)
Uniform tiling 44-t0.svg
(4.4.4.4)
Runcic square tiling honeycomb verf.png
86 runcicantic square
CDel nodes 10ru.pngCDel split2-44.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-43-t12.png
(4.6.6)
- Uniform polyhedron-43-t012.png
(3.4.4.4)
Uniform tiling 44-t12.svg
(4.8.8)
Runcicantic square tiling honeycomb verf.png
[63] rectified square
CDel nodes 11.pngCDel split2-44.pngCDel node.pngCDel 3.pngCDel node.pngCDel node h0.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
Uniform polyhedron-43-t0.png
(4.4.4)
- Uniform polyhedron-43-t0.png
(4.4.4)
Uniform tiling 44-t02.png
(4.4.4.4)
Rectified square tiling honeycomb verf.png H3 443 boundary 0100.png
[64] rectified order-4 octahedral
CDel nodes.pngCDel split2-44.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel node h0.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform polyhedron-43-t1.png
(3.4.3.4)
- Uniform polyhedron-43-t1.png
(3.4.3.4)
Uniform tiling 44-t1.png
(4.4.4.4)
Rectified order-4 octahedral honeycomb verf.png H3 344 CC center 0100.png
[65] order-4 octahedral
CDel nodes.pngCDel split2-44.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel node h0.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-43-t2.png
(4.4.4.4)
- Uniform polyhedron-43-t2.png
(4.4.4.4)
- Uniform tiling 44-t1.png CDel nodes.pngCDel split2-44.pngCDel node 1.png H3 344 CC center.png
[67] truncated order-4 octahedral
CDel nodes.pngCDel split2-44.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel node h0.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-43-t12.png
(4.6.6)
- Uniform polyhedron-43-t12.png
(4.6.6)
Uniform tiling 44-t1.png
(4.4.4.4)
Truncated order-4 octahedral honeycomb verf.png H3 443-0011.png
[68] bitruncated square
CDel nodes 11.pngCDel split2-44.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel node h0.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform polyhedron-43-t01.png
(3.8.8)
- Uniform polyhedron-43-t01.png
(3.8.8)
Uniform tiling 44-t012.png
(4.8.8)
Bitruncated square tiling honeycomb verf.png H3 443-0110.png
[70] cantellated order-4 octahedral
CDel nodes 11.pngCDel split2-44.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel node h0.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-43-t02.png
(3.4.4.4)
Uniform polyhedron 222-t012.png
(4.4.4)
Uniform polyhedron-43-t02.png
(3.4.4.4)
Uniform tiling 44-t02.png

(4.4.4.4)
Cantellated order-4 octahedral honeycomb verf.png H3 443-0101.png
[73] cantitruncated order-4 octahedral
CDel nodes 11.pngCDel split2-44.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel node h0.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-43-t012.png
(4.6.8)
Uniform polyhedron 222-t012.png
(4.4.4)
Uniform polyhedron-43-t012.png
(4.6.8)
Uniform tiling 44-t012.png
(4.8.8)
Cantitruncated order-4 octahedral honeycomb verf.png H3 443-0111.png
# Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
Vertex figure Picture
0
CDel nodea.pngCDel 4a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
1
CDel nodes.pngCDel 2.pngCDel node.png
0'
CDel nodea.pngCDel 4a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
3
CDel nodes.pngCDel split2-44.pngCDel node.png
Alt
Scaliform snub order-4 octahedral
CDel nodes.pngCDel split2-44.pngCDel node h.pngCDel 3.pngCDel node h.png = CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png = CDel node.pngCDel split1-44.pngCDel nodes hh.pngCDel split2.pngCDel node h.png
s{3,41,1}
CDel node.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png - - CDel nodes.pngCDel split2-44.pngCDel node h1.png irr. {}v{4}
Nonuniform snub rectified order-4 octahedral
CDel nodes hh.pngCDel split2-44.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel node h0.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png
sr{3,41,1}
Uniform polyhedron-43-s012.png
(3.3.3.3.4)
Uniform polyhedron-33-t0.png
(3.3.3)
Uniform polyhedron-43-s012.png
(3.3.3.3.4)
Uniform tiling 44-snub.png
(3.3.4.3.4)
Uniform polyhedron-33-t2.png
+(3.3.3)

[4,41,1] family

There are 7 forms, (all shared with [4,4,4] family), generated by ring permutations of the Coxeter group: CDel nodes.pngCDel split2-44.pngCDel node.pngCDel 4.pngCDel node.png

# Honeycomb name
Coxeter diagram
Cells by location Vertex figure Picture
0
CDel nodea.pngCDel 4a.pngCDel nodea.pngCDel 4a.pngCDel nodea.png
1
CDel nodes.pngCDel 2.pngCDel node.png
0'
CDel nodea.pngCDel 4a.pngCDel nodea.pngCDel 4a.pngCDel nodea.png
3
CDel nodes.pngCDel split2-44.pngCDel node.png
[62] Square
( CDel nodes.pngCDel split2-44.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel node h0.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png) = CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node g.pngCDel 3sg.pngCDel node g.png
Uniform tiling 44-t1.png
(4.4.4.4)
- Uniform tiling 44-t1.png
(4.4.4.4)
Uniform tiling 44-t1.png
(4.4.4.4)
Uniform tiling 44-t0.svg H3 443 FC boundary.png
[62] Square
( CDel nodes 11.pngCDel split2-44.pngCDel node.pngCDel 4.pngCDel node.pngCDel node h0.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png) = CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node g.pngCDel 3sg.pngCDel node g.png
Uniform tiling 44-t0.svg
(4.4.4.4)
- Uniform tiling 44-t0.svg
(4.4.4.4)
Uniform tiling 44-t02.png
(4.4.4.4)
Uniform tiling 44-t0.svg H3 443 FC boundary.png
[63] rectified square
( CDel nodes 11.pngCDel split2-44.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel node h0.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png) = CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node g.pngCDel 3sg.pngCDel node g.png
Uniform tiling 44-t02.png
(4.4.4.4)
Uniform polyhedron 222-t012.png
(4.4.4)
Uniform tiling 44-t02.png
(4.4.4.4)
Uniform tiling 44-t02.png
(4.4.4.4)
Rectified square tiling honeycomb verf.png H3 443 boundary 0100.png
[66] truncated square
( CDel nodes 11.pngCDel split2-44.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel node h0.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.png) = CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node g.pngCDel 3sg.pngCDel node g.png
Uniform tiling 44-t012.png
(4.8.8)
Uniform polyhedron 222-t012.png
(4.4.4)
Uniform tiling 44-t012.png
(4.8.8)
Uniform tiling 44-t012.png
(4.8.8)
Truncated square tiling honeycomb verf.png H3 444-0111.png
[77] order-4 square
CDel nodes.pngCDel split2-44.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel node h0.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png
Uniform tiling 44-t2.png
(4.4.4.4)
- Uniform tiling 44-t2.png
(4.4.4.4)
- Uniform tiling 44-t1.png CDel nodes.pngCDel split2-44.pngCDel node 1.png H3 444 FC boundary.png
[78] truncated order-4 square
CDel nodes.pngCDel split2-44.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel node h0.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Uniform tiling 44-t12.svg
(4.8.8)
- Uniform tiling 44-t12.svg
(4.8.8)
Uniform tiling 44-t1.png
(4.4.4.4)
Truncated order-4 square tiling honeycomb verf.png H3 444-1100.png
[79] bitruncated order-4 square
CDel nodes 11.pngCDel split2-44.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel node h0.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
Uniform tiling 44-t01.png
(4.8.8)
- Uniform tiling 44-t01.png
(4.8.8)
Uniform tiling 44-t012.png
(4.8.8)
Bitruncated order-4 square tiling honeycomb verf.png H3 444-0110.png
# Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
Vertex figure Picture
0
CDel nodea.pngCDel 4a.pngCDel nodea.pngCDel 4a.pngCDel nodea.png
1
CDel nodes.pngCDel 2.pngCDel node.png
0'
CDel nodea.pngCDel 4a.pngCDel nodea.pngCDel 4a.pngCDel nodea.png
3
CDel nodes.pngCDel split2-44.pngCDel node.png
Alt
[77] order-4 square
( CDel nodes.pngCDel split2-44.pngCDel node.pngCDel 4.pngCDel node h1.pngCDel node h0.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h1.pngCDel node.pngCDel split1-44.pngCDel nodes.pngCDel split2-44.pngCDel node 1.png) = CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h1.png - CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h1.png - CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
Hexahedron.png
Cube
Uniform tiling 44-t1.png CDel nodes.pngCDel split2-44.pngCDel node 1.png H3 444 FC boundary.png
[78] truncated order-4 square
( CDel nodes 11.pngCDel split2-44.pngCDel node.pngCDel 4.pngCDel node h1.pngCDel node h0.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h1.png) = (CDel node.pngCDel 4.pngCDel node 1.pngCDel split1-44.pngCDel nodes 10lu.pngCDel node h0.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.png )
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h1.png CDel nodes 11.pngCDel 2.pngCDel node h1.png CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h1.png CDel nodes 11.pngCDel split2-44.pngCDel node.png Truncated order-4 square tiling honeycomb verf.png H3 444-1100.png
[83] Alternated square
CDel nodes.pngCDel split2-44.pngCDel node h1.pngCDel 4.pngCDel node.pngCDel node 1.pngCDel split1-uu.pngCDel nodes.pngCDel 2a2b-cross.pngCDel nodes 11.pngCDel split2-uu.pngCDel node.png
CDel node.pngCDel 4.pngCDel node h1.pngCDel 4.pngCDel node.png - CDel node.pngCDel 4.pngCDel node h1.pngCDel 4.pngCDel node.png CDel nodes.pngCDel split2-44.pngCDel node h1.png CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
Hexahedron.png
CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
Cuboctahedron.png
Scaliform Snub order-4 square
CDel nodes.pngCDel split2-44.pngCDel node h.pngCDel 4.pngCDel node h.png
CDel node.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.png - CDel node.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.png CDel nodes.pngCDel split2-44.pngCDel node h.png
Nonuniform CDel nodes hh.pngCDel split2-44.pngCDel node.pngCDel 4.pngCDel node.png CDel node h.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png - CDel node h.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png CDel nodes hh.pngCDel split2-44.pngCDel node.png
Nonuniform CDel nodes hh.pngCDel split2-44.pngCDel node h.pngCDel 4.pngCDel node.png CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node.png - CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node.png CDel nodes hh.pngCDel split2-44.pngCDel node h.png
Nonsimplectic ( CDel nodes hh.pngCDel split2-44.pngCDel node.pngCDel 4.pngCDel node h.pngCDel node h0.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h.png )
= ( CDel node.pngCDel 4.pngCDel node h1.pngCDel 4.pngCDel node g.pngCDel 3sg.pngCDel node g.pngCDel node.pngCDel split1.pngCDel nodes 10lu.pngCDel 2a2b-cross.pngCDel nodes 10.png )
CDel node h.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h.png CDel nodes hh.pngCDel 2x.pngCDel node h.png CDel node h.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h.png CDel nodes hh.pngCDel split2-44.pngCDel node.png
Nonuniform Snub square
CDel nodes hh.pngCDel split2-44.pngCDel node h.pngCDel 4.pngCDel node h.pngCDel node h0.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.pngCDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node g.pngCDel 3sg.pngCDel node g.png
CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.png
Uniform tiling 44-snub.png
(3.3.4.3.4)
CDel nodes hh.pngCDel 2x.pngCDel node h.png
Uniform polyhedron-33-t0.png
(3.3.3)
CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.png
Uniform tiling 44-snub.png
(3.3.4.3.4)
CDel nodes hh.pngCDel split2-44.pngCDel node h.png
Uniform tiling 44-snub.png
(3.3.4.3.4)
Uniform polyhedron-33-t2.png
+(3.3.3)

[6,31,1] family

There are 11 forms (and only 4 not shared with [6,3,4] family), generated by ring permutations of the Coxeter group: [6,31,1] or CDel nodes.pngCDel split2.pngCDel node.pngCDel 6.pngCDel node.png.

# Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
Vertex figure Picture
0
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 6a.pngCDel nodea.png
1
CDel nodes.pngCDel 2.pngCDel node.png
0'
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 6a.pngCDel nodea.png
3
CDel nodes.pngCDel split2.pngCDel node.png
87 alternated order-6 cubic
CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 6.pngCDel node.pngCDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
- - (∞)
Uniform tiling 63-t2.png
(3.3.3.3.3)
(∞)
Tetrahedron.png
(3.3.3)
CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform tiling 63-t1.png
(3.6.3.6)
88 cantic order-6 cubic
CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 6.pngCDel node.pngCDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node.png
(1)
Uniform tiling 63-t1.png
(3.6.3.6)
- (2)
Uniform tiling 63-t12.png
(6.6.6)
(2)
Truncated tetrahedron.png
(3.6.6)
Cantic order-6 cubic honeycomb verf.png
89 runcic order-6 cubic
CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 6.pngCDel node 1.pngCDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node 1.png
(1)
Uniform tiling 63-t0.png
(6.6.6)
- (3)
Uniform tiling 63-t02.png
(3.4.6.4)
(1)
Tetrahedron.png
(3.3.3)
Runcic order-6 cubic honeycomb verf.png
90 runcicantic order-6 cubic
CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 6.pngCDel node 1.pngCDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node 1.png
(1)
Uniform tiling 63-t01.png
(3.12.12)
- (2)
Uniform tiling 63-t012.svg
(4.6.12)
(1)
Truncated tetrahedron.png
(3.6.6)
Runcicantic order-6 cubic honeycomb verf.png
[16] order-4 hexagonal
CDel nodes.pngCDel split2.pngCDel node.pngCDel 6.pngCDel node 1.pngCDel node h0.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node 1.png
(4)
Uniform tiling 63-t0.png
(6.6.6)
- (4)
Uniform tiling 63-t0.png
(6.6.6)
- Order-4 hexagonal tiling honeycomb verf.png CDel nodes.pngCDel split2.pngCDel node 1.png
(3.3.3.3)
H3 634 FC boundary.png
[17] rectified order-4 hexagonal
CDel nodes.pngCDel split2.pngCDel node 1.pngCDel 6.pngCDel node.pngCDel node h0.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node.png
(2)
Uniform tiling 63-t1.png
(3.6.3.6)
- (2)
Uniform tiling 63-t1.png
(3.6.3.6)
(2)
Uniform polyhedron-33-t1.png
(3.3.3.3)
Rectified order-4 hexagonal tiling honeycomb verf.png H3 634 boundary 0100.png
[18] rectified order-6 cubic
CDel nodes 11.pngCDel split2.pngCDel node.pngCDel 6.pngCDel node.pngCDel node h0.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
(1)
Uniform tiling 63-t2.png
(3.3.3.3.3)
- (1)
Uniform tiling 63-t2.png
(3.3.3.3.3)
(6)
Uniform polyhedron-33-t02.png
(3.4.3.4)
Rectified order-6 cubic honeycomb verf.png H3 436 CC center 0100.png
[20] truncated order-4 hexagonal
CDel nodes.pngCDel split2.pngCDel node 1.pngCDel 6.pngCDel node 1.pngCDel node h0.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node 1.png
(2)
Uniform tiling 63-t01.png
(3.12.12)
- (2)
Uniform tiling 63-t01.png
(3.12.12)
(1)
Uniform polyhedron-33-t1.png
(3.3.3.3)
Truncated order-4 hexagonal tiling honeycomb verf.png H3 634-1100.png
[21] bitruncated order-6 cubic
CDel nodes 11.pngCDel split2.pngCDel node 1.pngCDel 6.pngCDel node.pngCDel node h0.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node.png
(1)
Uniform tiling 63-t12.png
(6.6.6)
- (1)
Uniform tiling 63-t12.png
(6.6.6)
(2)
Uniform polyhedron-33-t012.png
(4.6.6)
Bitruncated order-4 hexagonal tiling honeycomb verf.png H3 634-0110.png
[24] cantellated order-6 cubic
CDel nodes 11.pngCDel split2.pngCDel node.pngCDel 6.pngCDel node 1.pngCDel node h0.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node 1.png
(1)
Uniform tiling 63-t02.png
(3.4.6.4)
(2)
Uniform polyhedron 222-t012.png
(4.4.4)
(1)
Uniform tiling 63-t02.png
(3.4.6.4)
(1)
Uniform polyhedron-33-t02.png
(3.4.3.4)
Truncated order-4 hexagonal tiling honeycomb verf.png H3 634-0101.png
[27] cantitruncated order-6 cubic
CDel nodes 11.pngCDel split2.pngCDel node 1.pngCDel 6.pngCDel node 1.pngCDel node h0.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node 1.png
(1)
Uniform tiling 63-t012.svg
(4.6.12)
(1)
Uniform polyhedron 222-t012.png
(4.4.4)
(1)
Uniform tiling 63-t012.svg
(4.6.12)
(1)
Uniform polyhedron-33-t012.png
(4.6.6)
Cantitruncated order-4 hexagonal tiling honeycomb verf.png H3 634-0111.png
# Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
Vertex figure Picture
0
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 6a.pngCDel nodea.png
1
CDel nodes.pngCDel 2.pngCDel node.png
0'
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 6a.pngCDel nodea.png
3
CDel nodes.pngCDel split2.pngCDel node.png
Alt
[141] alternated order-4 hexagonal
CDel nodes.pngCDel split2.pngCDel node.pngCDel 6.pngCDel node h1.pngCDel node h0.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node h1.pngCDel node h0.pngCDel 4.pngCDel node.pngCDel split1.pngCDel branch 10lu.pngCDel node.pngCDel split1.pngCDel branch 10luru.pngCDel split2.pngCDel node.png
Uniform polyhedron-43-t12.png CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
(4.6.6)
Nonuniform bisnub order-4 hexagonal
CDel nodes hh.pngCDel split2.pngCDel node h.pngCDel 6.pngCDel node.pngCDel node h0.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node.png
Alternated bitruncated order-4 hexagonal tiling honeycomb vertex figure.png
Nonuniform snub rectified order-4 hexagonal
CDel nodes hh.pngCDel split2.pngCDel node h.pngCDel 6.pngCDel node h.pngCDel node h0.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node h.png
Uniform tiling 63-snub.png
(3.3.3.3.6)
Uniform polyhedron-33-t0.png
(3.3.3)
Uniform tiling 63-snub.png
(3.3.3.3.6)
Uniform polyhedron-33-s012.png
(3.3.3.3.3)
Uniform polyhedron-33-t2.png
+(3.3.3)

Cyclic graphs

[(4,4,3,3)] family

There are 11 forms, 4 unique to this family, generated by ring permutations of the Coxeter group: CDel node.pngCDel split1-44.pngCDel nodes.pngCDel split2.pngCDel node.png, with CDel node c1.pngCDel split1-44.pngCDel nodeab c3.pngCDel split2.pngCDel node c2.pngCDel node h0.pngCDel 4.pngCDel node c3.pngCDel split1-43.pngCDel nodeab c1-2.png.

# Honeycomb name
Coxeter diagram
Cells by location Vertex figure Picture
0
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
1
CDel node.pngCDel split1-44.pngCDel nodes.png
2
CDel nodes.pngCDel split2.pngCDel node.png
3
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
91 tetrahedral-square
CDel node.pngCDel split1-44.pngCDel nodes 10luru.pngCDel split2.pngCDel node.png
- (6)
CDel node.pngCDel split1-44.pngCDel nodes 10lu.png
Uniform tiling 44-t0.svg
(444)
(8)
CDel nodes 10ru.pngCDel split2.pngCDel node.png
Uniform polyhedron-33-t0.png
(333)
(12)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform polyhedron-43-t1.png
(3434)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-43-t02.png
(3444)
92 cyclotruncated square-tetrahedral
CDel node 1.pngCDel split1-44.pngCDel nodes 10luru.pngCDel split2.pngCDel node.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
Uniform polyhedron-43-t0.png
(444)
CDel node 1.pngCDel split1-44.pngCDel nodes 10lu.png
Uniform tiling 44-t01.png
(488)
CDel nodes 10ru.pngCDel split2.pngCDel node.png
Uniform polyhedron-33-t0.png
(333)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform polyhedron-43-t01.png
(388)
Bitruncated 4433 honeycomb verf.png
93 cyclotruncated tetrahedral-square
CDel node.pngCDel split1-44.pngCDel nodes 10luru.pngCDel split2.pngCDel node 1.png
(1)
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-43-t2.png
(3333)
(1)
CDel node.pngCDel split1-44.pngCDel nodes 10lu.png
Uniform tiling 44-t0.svg
(444)
(4)
CDel nodes 10ru.pngCDel split2.pngCDel node 1.png
Uniform polyhedron-33-t01.png
(366)
(4)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-43-t12.png
(466)
Tritruncated 4433 honeycomb verf.png
94 truncated tetrahedral-square
CDel node 1.pngCDel split1-44.pngCDel nodes 10luru.pngCDel split2.pngCDel node 1.png
(1)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-43-t02.png
(3444)
(1)
CDel node 1.pngCDel split1-44.pngCDel nodes 10lu.png
Uniform tiling 44-t01.png
(488)
(1)
CDel nodes 10ru.pngCDel split2.pngCDel node 1.png
Uniform polyhedron-33-t01.png
(366)
(2)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-43-t012.png
(468)
Bicantitruncated 4433 honeycomb verf.png
[64] (CDel node.pngCDel split1-44.pngCDel nodes 11.pngCDel split2.pngCDel node.pngCDel node h0.pngCDel 4.pngCDel node 1.pngCDel split1-43.pngCDel nodes.png ) = CDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
rectified order-4 octahedral
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform polyhedron-43-t1.png
(3434)
CDel node.pngCDel split1-44.pngCDel nodes 11.png
Uniform tiling 44-t02.png
(4444)
CDel nodes 11.pngCDel split2.pngCDel node.png
Uniform polyhedron-33-t02.png
(3434)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform polyhedron-43-t1.png
(3434)
Rectified order-4 octahedral honeycomb verf.png H3 344 CC center 0100.png
[65] ( CDel node.pngCDel split1-44.pngCDel nodes.pngCDel split2.pngCDel node 1.pngCDel node h0.pngCDel 4.pngCDel node.pngCDel split1-43.pngCDel nodes 01ld.png ) = CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
order-4 octahedral
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-43-t2.png
(3333)
- CDel nodes.pngCDel split2.pngCDel node 1.png
Uniform polyhedron-33-t1.png
(3333)
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-43-t2.png
(3333)
Uniform tiling 44-t0.svg CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png H3 344 CC center.png
[67] (CDel node.pngCDel split1-44.pngCDel nodes 11.pngCDel split2.pngCDel node 1.pngCDel node h0.pngCDel 4.pngCDel node 1.pngCDel split1-43.pngCDel nodes 01ld.png ) = CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
truncated order-4 octahedral
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-43-t12.png
(466)
CDel node.pngCDel split1-44.pngCDel nodes 11.png
Uniform tiling 44-t02.png
(4444)
CDel nodes 11.pngCDel split2.pngCDel node 1.png
Uniform polyhedron-33-t012.png
(3434)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-43-t12.png
(466)
Truncated order-4 octahedral honeycomb verf.png H3 443-0011.png
[83] alternated square
(CDel node 1.pngCDel split1-44.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel node h0.pngCDel 4.pngCDel node.pngCDel split1-43.pngCDel nodes 10lu.png) = CDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
Uniform polyhedron-43-t0.png
(444)
CDel node 1.pngCDel split1-44.pngCDel nodes.png
Uniform tiling 44-t1.png
(4444)
- CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
Uniform polyhedron-43-t0.png
(444)
Uniform polyhedron-33-t02.png
(4.3.4.3)
[84] cantic square
(CDel node 1.pngCDel split1-44.pngCDel nodes 11.pngCDel split2.pngCDel node.pngCDel node h0.pngCDel 4.pngCDel node 1.pngCDel split1-43.pngCDel nodes 10lu.png) = CDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform polyhedron-43-t01.png
(388)
CDel node 1.pngCDel split1-44.pngCDel nodes 11.png
Uniform tiling 44-t012.png
(488)
CDel nodes 11.pngCDel split2.pngCDel node.png
Uniform polyhedron-33-t02.png
(3434)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform polyhedron-43-t01.png
(388)
Cantic square tiling honeycomb verf.png
[85] runcic square
(CDel node 1.pngCDel split1-44.pngCDel nodes.pngCDel split2.pngCDel node 1.pngCDel node h0.pngCDel 4.pngCDel node.pngCDel split1-43.pngCDel nodes 11.png) = CDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-43-t02.png
(3444)
CDel node 1.pngCDel split1-44.pngCDel nodes.png
Uniform tiling 44-t1.png
(3434)
CDel nodes.pngCDel split2.pngCDel node 1.png
Uniform polyhedron-33-t1.png
(3333)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-43-t02.png
(3444)
Runcic square tiling honeycomb verf.png
[86] runcicantic square
(CDel node 1.pngCDel split1-44.pngCDel nodes 11.pngCDel split2.pngCDel node 1.pngCDel node h0.pngCDel 4.pngCDel node 1.pngCDel split1-43.pngCDel nodes 11.png) = CDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-43-t012.png
(468)
CDel node 1.pngCDel split1-44.pngCDel nodes 11.png
Uniform tiling 44-t012.png
(488)
CDel nodes 11.pngCDel split2.pngCDel node 1.png
Uniform polyhedron-33-t012.png
(466)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-43-t012.png
(468)
Runcicantic square tiling honeycomb verf.png
# Honeycomb name
Coxeter diagram
Cells by location Vertex figure Picture
0
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
1
CDel node.pngCDel split1-44.pngCDel nodes.png
2
CDel nodes.pngCDel split2.pngCDel node.png
3
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
Alt
Scaliform snub order-4 octahedral
CDel node.pngCDel split1-44.pngCDel nodes hh.pngCDel split2.pngCDel node h.png = CDel nodes.pngCDel split2-44.pngCDel node h.pngCDel 3.pngCDel node h.png = CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png
CDel node.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png - - CDel nodes.pngCDel split2-44.pngCDel node h1.png irr. {}v{4}
Nonuniform CDel node h.pngCDel split1-44.pngCDel nodes hh.pngCDel split2.pngCDel node h.png CDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node h.png CDel node h.pngCDel split1-44.pngCDel nodes hh.png CDel nodes hh.pngCDel split2.pngCDel node h.png CDel node h.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png
Nonsimplectic alternated tetrahedral-square
CDel node h1.pngCDel split1-44.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel branchu 10.pngCDel split2.pngCDel node.pngCDel split1.pngCDel branchu 01.png
CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png CDel node h1.pngCDel split1-44.pngCDel nodes.png CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png

[(4,4,4,3)] family

There are 9 forms, generated by ring permutations of the Coxeter group: CDel label4.pngCDel branch.pngCDel 4a4b.pngCDel branch.png.

# Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
Vertex figure Picture
0
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
1
CDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
2
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
3
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
95 cubic-square
CDel label4.pngCDel branch 10r.pngCDel 4a4b.pngCDel branch.png
(8)
Uniform polyhedron-43-t0.png
(4.4.4)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
- (6)
Uniform tiling 44-t0.svg
(4.4.4.4)
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png
(12)
Uniform tiling 44-t1.png
(4.4.4.4)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
Uniform polyhedron-43-t02.png
(3.4.4.4)
96 octahedral-square
CDel label4.pngCDel branch.pngCDel 4a4b.pngCDel branch 10l.png
Uniform polyhedron-43-t1.png
(3.4.3.4)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform polyhedron-43-t2.png
(3.3.3.3)
CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
- Uniform tiling 44-t2.png
(4.4.4.4)
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png
Uniform tiling 44-t02.png
(4.4.4.4)
97 cyclotruncated cubic-square
CDel label4.pngCDel branch 10r.pngCDel 4a4b.pngCDel branch 10l.png
(4)
Uniform polyhedron-43-t01.png
(3.8.8)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
(1)
Uniform polyhedron-43-t2.png
(3.3.3.3)
CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
(1)
Uniform tiling 44-t0.svg
(4.4.4.4)
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
(4)
Uniform tiling 44-t12.svg
(4.8.8)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Uniform t12 4443 honeycomb verf.png
98 cyclotruncated square-cubic
CDel label4.pngCDel branch 11.pngCDel 4a4b.pngCDel branch.png
(1)
Uniform polyhedron-43-t0.png
(4.4.4)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
(1)
Uniform polyhedron-43-t0.png
(4.4.4)
CDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
(3)
Uniform tiling 44-t01.png
(4.8.8)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
(3)
Uniform tiling 44-t01.png
(4.8.8)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
Uniform t01 4443 honeycomb verf.png
99 cyclotruncated octahedral-square
CDel label4.pngCDel branch.pngCDel 4a4b.pngCDel branch 11.png
(4)
Uniform polyhedron-43-t12.png
(4.6.6)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
(4)
Uniform polyhedron-43-t12.png
(4.6.6)
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
(1)
Uniform tiling 44-t2.png
(4.4.4.4)
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png
(1)
Uniform tiling 44-t2.png
(4.4.4.4)
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png
Uniform t23 4443 honeycomb verf.png
100 rectified cubic-square
CDel label4.pngCDel branch 01r.pngCDel 4a4b.pngCDel branch 10l.png
(1)
Uniform polyhedron-43-t1.png
(3.4.3.4)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
(2)
Uniform polyhedron-43-t02.png
(3.4.4.4)
CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
(1)
Uniform tiling 44-t1.png
(4.4.4.4)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
(2)
Uniform tiling 44-t02.png
(4.4.4.4)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png
Uniform t02 4443 honeycomb verf.png
101 truncated cubic-square
CDel label4.pngCDel branch 11.pngCDel 4a4b.pngCDel branch 10l.png
(1)
Uniform polyhedron-43-t01.png
(4.8.8)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
(1)
Uniform polyhedron-43-t02.png
(3.4.4.4)
CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
(2)
Uniform tiling 44-t01.png
(4.8.8)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
(1)
Uniform tiling 44-t012.png
(4.8.8)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Uniform t012 4443 honeycomb verf.png
102 truncated octahedral-square
CDel label4.pngCDel branch 10r.pngCDel 4a4b.pngCDel branch 11.png
(2)
Uniform polyhedron-43-t012.png
(4.6.8
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
(1)
Uniform polyhedron-43-t12.png
(4.6.6)
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
(1)
Uniform tiling 44-t02.png
(4.4.4.4)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png
(1)
Uniform tiling 44-t12.svg
(4.8.8)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Uniform t123 4443 honeycomb verf.png
103 omnitruncated octahedral-square
CDel label4.pngCDel branch 11.pngCDel 4a4b.pngCDel branch 11.png
(1)
Uniform polyhedron-43-t012.png
(4.6.8)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
(1)
Uniform polyhedron-43-t012.png
(4.6.8)
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png
(1)
Uniform tiling 44-t012.png
(4.8.8)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.png
(1)
Uniform tiling 44-t012.png
(4.8.8)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Uniform t0123 4443 honeycomb verf.png
Alternated forms
# Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
Vertex figure
0
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
1
CDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
2
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
3
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
Alt
Nonsimplectic alternated cubic-square
CDel node h1.pngCDel split1-44.pngCDel nodes.pngCDel split2-43.pngCDel node.pngCDel branchu 10.pngCDel split2-43.pngCDel node.pngCDel split1-43.pngCDel branchu 01.png
- Uniform polyhedron-33-t0.png
CDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h1.png
Uniform tiling 44-t1.png
CDel node.pngCDel 4.pngCDel node h1.pngCDel 4.pngCDel node.png
Uniform tiling 44-t0.svg
CDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
Uniform polyhedron-43-t02.png
(3.4.4.4)
Nonuniform snub octahedral-square
CDel node.pngCDel split1-44.pngCDel nodes hh.pngCDel split2-43.pngCDel node h.png
Uniform polyhedron-43-s012.png
CDel node h.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png
Uniform polyhedron-43-h01.png
CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node.png
Uniform tiling 44-t02.png
CDel node h.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h.png
Uniform tiling 44-h01.png
CDel node.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.png
Nonuniform cyclosnub square-cubic
CDel label4.pngCDel branch hh.pngCDel 4a4b.pngCDel branch.png
Uniform polyhedron-33-t0.png
CDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
Uniform polyhedron-33-t0.png
CDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h.png
Uniform polyhedron-43-h01.png
CDel node h.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
Uniform tiling 44-h01.png
CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node.png
Nonuniform cyclosnub octahedral-square
CDel label4.pngCDel branch.pngCDel 4a4b.pngCDel branch hh.png
Uniform tiling 44-h01.png
CDel node.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png
Uniform polyhedron-43-h01.png
CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node.png
Uniform tiling 44-h01.png
CDel node.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.png
Uniform tiling 44-t0.svg
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h.png
Nonuniform omnisnub cubic-square
CDel label4.pngCDel branch hh.pngCDel 4a4b.pngCDel branch hh.png
Uniform polyhedron-43-h01.png
(3.3.3.3.4)
CDel node h.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png
Uniform polyhedron-43-h01.png
(3.3.3.3.4)
CDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node h.png
Uniform tiling 44-snub.png
(3.3.4.3.4)
CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.png
Uniform tiling 44-snub.png
(3.3.4.3.4)
CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.png
Tetrahedron.png
+(3.3.3)

[(4,4,4,4)] family

There are 5 forms, 1 unique, generated by ring permutations of the Coxeter group: CDel label4.pngCDel branch.pngCDel 4a4b.pngCDel branch.pngCDel label4.png. Repeat constructions are related as: CDel node c3.pngCDel split1-44.pngCDel nodeab c1-2.pngCDel split2-44.pngCDel node c3.pngCDel node h0.pngCDel 4.pngCDel node c3.pngCDel split1-44.pngCDel nodeab c1-2.png, CDel node c1.pngCDel split1-44.pngCDel nodeab c2.pngCDel split2-44.pngCDel node c1.pngCDel node h0.pngCDel 4.pngCDel node c1.pngCDel 4.pngCDel node c2.pngCDel 4.pngCDel node h0.png, and CDel label4.pngCDel branch c1.pngCDel 4-4.pngCDel branch c1.pngCDel label4.pngCDel label4.pngCDel branch c1.pngCDel 4-4.pngCDel nodes.png.

# Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
Vertex figure Picture
0
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
1
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
2
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
3
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
104 quarter order-4 square
CDel label4.pngCDel branch 10r.pngCDel 4a4b.pngCDel branch 10l.pngCDel label4.pngCDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h1.png
Uniform tiling 44-t01.png
(4.8.8)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
Uniform tiling 44-t2.png
(4.4.4.4)
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png
Uniform tiling 44-t0.svg
(4.4.4.4)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
Uniform tiling 44-t12.svg
(4.8.8)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Paracompact honeycomb 4444 1100 verf.png
[62] square
CDel label4.pngCDel branch 01r.pngCDel 4a4b.pngCDel branch 10l.pngCDel label4.pngCDel node h0.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h0.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node g.pngCDel 3sg.pngCDel node g.png
Uniform tiling 44-t1.png
(4.4.4.4)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
Uniform tiling 44-t02.png
(4.4.4.4)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png
Uniform tiling 44-t1.png
(4.4.4.4)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
Uniform tiling 44-t02.png
(4.4.4.4)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png
Square tiling honeycomb verf.png H3 443 FC boundary.png
[77] order-4 square
(CDel label4.pngCDel branch 10r.pngCDel 4a4b.pngCDel branch.pngCDel label4.pngCDel node h0.pngCDel 4.pngCDel node.pngCDel split1-44.pngCDel nodes 10lu.png ) = CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
Uniform tiling 44-t0.svg
(4.4.4.4)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
- Uniform tiling 44-t0.svg
(4.4.4.4)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
Uniform tiling 44-t1.png
(4.4.4.4)
CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
Uniform tiling 44-t02.png
(4.4.4.4)
H3 444 FC boundary.png
[78] truncated order-4 square
( CDel label4.pngCDel branch 11.pngCDel 4a4b.pngCDel branch 10l.pngCDel label4.pngCDel node h0.pngCDel 4.pngCDel node 1.pngCDel split1-44.pngCDel nodes 10lu.png ) = CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
Uniform tiling 44-t01.png
(4.8.8)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
Uniform tiling 44-t02.png
(4.4.4.4)
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png
Uniform tiling 44-t01.png
(4.8.8)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
Uniform tiling 44-t012.png
(4.8.8)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Truncated order-4 square tiling honeycomb verf.png H3 444-1100.png
[79] bitruncated order-4 square
CDel label4.pngCDel branch 11.pngCDel 4a4b.pngCDel branch 11.pngCDel label4.pngCDel node h0.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node h0.png
Uniform tiling 44-t012.png
(4.8.8)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Uniform tiling 44-t012.png
(4.8.8)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Uniform tiling 44-t012.png
(4.8.8)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Uniform tiling 44-t012.png
(4.8.8)
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Bitruncated order-4 square tiling honeycomb verf.png H3 444-0110.png
Alternated forms
# Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
Vertex figure
0
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
1
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
2
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
3
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
Alt
[83] alternated square
(CDel node h.pngCDel split1-44.pngCDel nodes.pngCDel split2-44.pngCDel node h.pngCDel node h0.pngCDel 4.pngCDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h0.pngCDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node g.pngCDel 3sg.pngCDel node g.png) = CDel nodes 10ru.pngCDel split2-44.pngCDel node.pngCDel 3.pngCDel node.png
(6)
Uniform tiling 44-t0.svg
(4.4.4.4)
CDel node h.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h.png
(6)
Uniform tiling 44-t0.svg
(4.4.4.4)
CDel node.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node.png
(6)
Uniform tiling 44-t0.svg
(4.4.4.4)
CDel node h.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h.png
(6)
Uniform tiling 44-t0.svg
(4.4.4.4)
CDel node.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node.png
(8)
Uniform polyhedron-43-t0.png
(4.4.4)
Uniform polyhedron-43-t1.png
(4.3.4.3)
Nonsimplectic alternated order-4 square
CDel node h1.pngCDel split1-44.pngCDel nodes.pngCDel split2-44.pngCDel node.pngCDel branchu 10.pngCDel split2-44.pngCDel node.pngCDel split1-44.pngCDel branchu 01.png

CDel node h.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
-
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h.png

CDel node.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node.png
Nonsimplectic cantic order-4 square
CDel node h1.pngCDel split1-44.pngCDel nodes.pngCDel split2-44.pngCDel node 1.pngCDel branchu 10.pngCDel split2-44.pngCDel node 1.pngCDel split1-44.pngCDel branchu 01.png

CDel node h.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png

CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png

CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h.png

CDel node.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node.png
Nonuniform cyclosnub square
CDel label4.pngCDel branch hh.pngCDel 4a4b.pngCDel branch.pngCDel label4.png

CDel node h.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png

CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h.png

CDel node.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.png

CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node.png
Nonuniform snub order-4 square
CDel node h.pngCDel split1-44.pngCDel nodes hh.pngCDel split2-44.pngCDel node.png

CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node.png

CDel node h.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h.png

CDel node.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.png

CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.png
Nonuniform bisnub order-4 square
CDel label4.pngCDel branch hh.pngCDel 4a4b.pngCDel branch hh.pngCDel label4.pngCDel node h0.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h0.png
Uniform tiling 44-snub.png
(3.3.4.3.4)
CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.png
Uniform tiling 44-snub.png
(3.3.4.3.4)
CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.png
Uniform tiling 44-snub.png
(3.3.4.3.4)
CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.png
Uniform tiling 44-snub.png
(3.3.4.3.4)
CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.png
Tetrahedron.png
+(3.3.3)
Alternated bitruncated order-4 square tiling honeycomb vertex figure.png

[(6,3,3,3)] family

There are 9 forms, generated by ring permutations of the Coxeter group: CDel label6.pngCDel branch.pngCDel 3ab.pngCDel branch.png.

# Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
Vertex figure
0
CDel nodea.pngCDel 3a.pngCDel branch.png
1
CDel nodeb.pngCDel 3b.pngCDel branch.png
2
CDel label6.pngCDel branch.pngCDel 3b.pngCDel nodeb.png
3
CDel label6.pngCDel branch.pngCDel 3a.pngCDel nodea.png
105 tetrahedral-hexagonal
CDel label6.pngCDel branch 10r.pngCDel 3ab.pngCDel branch.png
(4)
Uniform polyhedron-33-t0.png
(3.3.3)
- (4)
Uniform tiling 63-t0.png
(6.6.6)
(6)
Uniform tiling 63-t1.png
(3.6.3.6)
Uniform polyhedron-33-t02.png CDel nodeb 1.pngCDel 3b.pngCDel branch 10l.png
(3.4.3.4)
106 tetrahedral-triangular
CDel label6.pngCDel branch.pngCDel 3ab.pngCDel branch 10l.png

Uniform polyhedron-33-t1.png
(3.3.3.3)

Uniform polyhedron-33-t0.png
(3.3.3)
-
Uniform tiling 63-t2.png
(3.3.3.3.3.3)
Uniform tiling 63-t02.png CDel label6.pngCDel branch 10r.pngCDel 3b.pngCDel nodeb 1.png
(3.4.6.4)
107 cyclotruncated tetrahedral-hexagonal
CDel label6.pngCDel branch 10r.pngCDel 3ab.pngCDel branch 10l.png
(3)
Uniform polyhedron-33-t01.png
(3.6.6)
(1)
Uniform polyhedron-33-t0.png
(3.3.3)
(1)
Uniform tiling 63-t0.png
(6.6.6)
(3)
Uniform tiling 63-t12.png
(6.6.6)
Uniform t12 6333 honeycomb verf.png
108 cyclotruncated hexagonal-tetrahedral
CDel label6.pngCDel branch 11.pngCDel 3ab.pngCDel branch.png
(1)
Uniform polyhedron-33-t0.png
(3.3.3)
(1)
Uniform polyhedron-33-t0.png
(3.3.3)
(4)
Uniform tiling 63-t01.png
(3.12.12)
(4)
Uniform tiling 63-t01.png
(3.12.12)
Uniform t01 6333 honeycomb verf.png
109 cyclotruncated tetrahedral-triangular
CDel label6.pngCDel branch.pngCDel 3ab.pngCDel branch 11.png
(6)
Uniform polyhedron-33-t01.png
(3.6.6)
(6)
Uniform polyhedron-33-t01.png
(3.6.6)
(1)
Uniform tiling 63-t2.png
(3.3.3.3.3.3)
(1)
Uniform tiling 63-t2.png
(3.3.3.3.3.3)
Uniform t23 6333 honeycomb verf.png
110 rectified tetrahedral-hexagonal
CDel label6.pngCDel branch 01r.pngCDel 3ab.pngCDel branch 10l.png
(1)
Uniform polyhedron-33-t1.png
(3.3.3.3)
(2)
Uniform polyhedron-33-t02.png
(3.4.3.4)
(1)
Uniform tiling 63-t1.png
(3.6.3.6)
(2)
Uniform tiling 63-t02.png
(3.4.6.4)
Uniform t02 6333 honeycomb verf.png
111 truncated tetrahedral-hexagonal
CDel label6.pngCDel branch 11.pngCDel 3ab.pngCDel branch 10l.png
(1)
Uniform polyhedron-33-t01.png
(3.6.6)
(1)
Uniform polyhedron-33-t02.png
(3.4.3.4)
(1)
Uniform tiling 63-t01.png
(3.12.12)
(2)
Uniform tiling 63-t012.svg
(4.6.12)
Uniform t012 6333 honeycomb verf.png
112 truncated tetrahedral-triangular
CDel label6.pngCDel branch 10r.pngCDel 3ab.pngCDel branch 11.png
(2)
Uniform polyhedron-33-t012.png
(4.6.6)
(1)
Uniform polyhedron-33-t01.png
(3.6.6)
(1)
Uniform tiling 63-t02.png
(3.4.6.4)
(1)
Uniform tiling 63-t12.png
(6.6.6)
Uniform t123 6333 honeycomb verf.png
113 omnitruncated tetrahedral-hexagonal
CDel label6.pngCDel branch 11.pngCDel 3ab.pngCDel branch 11.png
(1)
Uniform polyhedron-33-t012.png
(4.6.6)
(1)
Uniform polyhedron-33-t012.png
(4.6.6)
(1)
Uniform tiling 63-t012.svg
(4.6.12)
(1)
Uniform tiling 63-t012.svg
(4.6.12)
Uniform t0123 6333 honeycomb verf.png
Alternated forms
# Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
Vertex figure
0
CDel nodea.pngCDel 3a.pngCDel branch.png
1
CDel nodeb.pngCDel 3b.pngCDel branch.png
2
CDel label6.pngCDel branch.pngCDel 3b.pngCDel nodeb.png
3
CDel label6.pngCDel branch.pngCDel 3a.pngCDel nodea.png
Alt
Nonuniform omnisnub tetrahedral-hexagonal
CDel label6.pngCDel branch hh.pngCDel 3ab.pngCDel branch hh.png
Uniform polyhedron-33-s012.png
(3.3.3.3.3)
Uniform polyhedron-33-s012.png
(3.3.3.3.3)
Uniform tiling 63-snub.png
(3.3.3.3.6)
Uniform tiling 63-snub.png
(3.3.3.3.6)
Tetrahedron.png
+(3.3.3)
Snub 6333 honeycomb verf.png

[(6,3,4,3)] family

There are 9 forms, generated by ring permutations of the Coxeter group: CDel label6.pngCDel branch.pngCDel 3ab.pngCDel branch.pngCDel label4.png

# Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
Vertex figure
0
CDel nodea.pngCDel 3a.pngCDel branch.pngCDel label4.png
1
CDel nodeb.pngCDel 3b.pngCDel branch.pngCDel label4.png
2
CDel label6.pngCDel branch.pngCDel 3b.pngCDel nodeb.png
3
CDel label6.pngCDel branch.pngCDel 3a.pngCDel nodea.png
114 octahedral-hexagonal
CDel label6.pngCDel branch 10r.pngCDel 3ab.pngCDel branch.pngCDel label4.png
(6)
Uniform polyhedron-43-t2.png
(3.3.3.3)
CDel nodea 1.pngCDel 3a.pngCDel branch.pngCDel label4.png
- (8)
Uniform tiling 63-t0.png
(6.6.6)
CDel label6.pngCDel branch 01.pngCDel 3b.pngCDel nodeb.png
(12)
Uniform tiling 63-t1.png
(3.6.3.6)
CDel label6.pngCDel branch 10.pngCDel 3a.pngCDel nodea.png
Hyperbolic honeycomb 6343 t0 verf.png
115 cubic-triangular
CDel label6.pngCDel branch.pngCDel 3ab.pngCDel branch 10l.pngCDel label4.png
(∞)
Uniform polyhedron-43-t1.png
(3.4.3.4)
CDel nodea.pngCDel 3a.pngCDel branch 10.pngCDel label4.png
(∞)
Uniform polyhedron-43-t0.png
(4.4.4)
CDel nodeb.pngCDel 3b.pngCDel branch 10l.pngCDel label4.png
- (∞)
Uniform tiling 63-t2.png
(3.3.3.3.3.3)
CDel label6.pngCDel branch.pngCDel 3a.pngCDel nodea 1.png
Uniform tiling 63-t02.png CDel label6.pngCDel branch 10r.pngCDel 3b.pngCDel nodeb 1.png
(3.4.6.4)
116 cyclotruncated octahedral-hexagonal
CDel label6.pngCDel branch 10r.pngCDel 3ab.pngCDel branch 10l.pngCDel label4.png
(3)
Uniform polyhedron-43-t12.png
(4.6.6)
CDel nodea 1.pngCDel 3a.pngCDel branch 10.pngCDel label4.png
(1)
Uniform polyhedron-43-t0.png
(4.4.4)
CDel nodeb.pngCDel 3b.pngCDel branch 10l.pngCDel label4.png
(1)
Uniform tiling 63-t0.png
(6.6.6)
CDel label6.pngCDel branch 10r.pngCDel 3b.pngCDel nodeb.png
(3)
Uniform tiling 63-t12.png
(6.6.6)
CDel label6.pngCDel branch 10.pngCDel 3a.pngCDel nodea 1.png
Uniform t12 6343 honeycomb verf.png
117 cyclotruncated hexagonal-octahedral
CDel label6.pngCDel branch 11.pngCDel 3ab.pngCDel branch.pngCDel label4.png
(1)
Uniform polyhedron-43-t2.png
(3.3.3.3)
CDel nodea 1.pngCDel 3a.pngCDel branch.pngCDel label4.png
(1)
Uniform polyhedron-43-t2.png
(3.3.3.3)
CDel nodeb 1.pngCDel 3b.pngCDel branch.pngCDel label4.png
(4)
Uniform tiling 63-t01.png
(3.12.12)
CDel label6.pngCDel branch 01.pngCDel 3b.pngCDel nodeb 1.png
(4)
Uniform tiling 63-t01.png
(3.12.12)
CDel label6.pngCDel branch 11.pngCDel 3a.pngCDel nodea.png
Uniform t01 6343 honeycomb verf.png
118 cyclotruncated cubic-triangular
CDel label6.pngCDel branch.pngCDel 3ab.pngCDel branch 11.pngCDel label4.png
(6)
Uniform polyhedron-43-t01.png
(3.8.8)
CDel nodea.pngCDel 3a.pngCDel branch 11.pngCDel label4.png
(6)
Uniform polyhedron-43-t01.png
(3.8.8)
CDel nodeb.pngCDel 3b.pngCDel branch 11.pngCDel label4.png
(1)
Uniform tiling 63-t2.png
(3.3.3.3.3.3)
CDel label6.pngCDel branch.pngCDel 3b.pngCDel nodeb 1.png
(1)
Uniform tiling 63-t2.png
(3.3.3.3.3.3)
CDel label6.pngCDel branch.pngCDel 3a.pngCDel nodea 1.png
Uniform t23 6343 honeycomb verf.png
119 rectified octahedral-hexagonal
CDel label6.pngCDel branch 01r.pngCDel 3ab.pngCDel branch 10l.pngCDel label4.png
(1)
Uniform polyhedron-43-t1.png
(3.4.3.4)
CDel nodea.pngCDel 3a.pngCDel branch 10.pngCDel label4.png
(2)
Uniform polyhedron-43-t02.png
(3.4.4.4)
CDel nodeb 1.pngCDel 3b.pngCDel branch 10l.pngCDel label4.png
(1)
Uniform tiling 63-t1.png
(3.6.3.6)
CDel label6.pngCDel branch 01.pngCDel 3b.pngCDel nodeb.png
(2)
Uniform tiling 63-t02.png
(3.4.6.4)
CDel label6.pngCDel branch 01r.pngCDel 3a.pngCDel nodea 1.png
Uniform t02 6343 honeycomb verf.png
120 truncated octahedral-hexagonal
CDel label6.pngCDel branch 11.pngCDel 3ab.pngCDel branch 10l.pngCDel label4.png
(1)
Uniform polyhedron-43-t12.png
(4.6.6)
CDel nodea 1.pngCDel 3a.pngCDel branch 10.pngCDel label4.png
(1)
Uniform polyhedron-43-t02.png
(3.4.4.4)
CDel nodeb 1.pngCDel 3b.pngCDel branch 10l.pngCDel label4.png
(1)
Uniform tiling 63-t01.png
(3.12.12)
CDel label6.pngCDel branch 11.pngCDel 3b.pngCDel nodeb.png
(2)
Uniform tiling 63-t012.svg
(4.6.12)
CDel label6.pngCDel branch 11.pngCDel 3a.pngCDel nodea 1.png
Uniform t012 6343 honeycomb verf.png
121 truncated cubic-triangular
CDel label6.pngCDel branch 10r.pngCDel 3ab.pngCDel branch 11.pngCDel label4.png
(2)
Uniform polyhedron-43-t012.png
(4.6.8)
CDel nodea 1.pngCDel 3a.pngCDel branch 11.pngCDel label4.png
(1)
Uniform polyhedron-43-t01.png
(3.8.8)
CDel nodeb.pngCDel 3b.pngCDel branch 11.pngCDel label4.png
(1)
Uniform tiling 63-t02.png
(3.4.6.4)
CDel label6.pngCDel branch 10r.pngCDel 3b.pngCDel nodeb 1.png
(1)
Uniform tiling 63-t12.png
(6.6.6)
CDel label6.pngCDel branch 11.pngCDel 3a.pngCDel nodea.png
Uniform t123 6343 honeycomb verf.png
122 omnitruncated octahedral-hexagonal
CDel label6.pngCDel branch 11.pngCDel 3ab.pngCDel branch 11.pngCDel label4.png
(1)
Uniform polyhedron-43-t012.png
(4.6.8)
CDel nodea 1.pngCDel 3a.pngCDel branch 11.pngCDel label4.png
(1)
Uniform polyhedron-43-t012.png
(4.6.8)
CDel nodeb 1.pngCDel 3b.pngCDel branch 11.pngCDel label4.png
(1)
Uniform tiling 63-t012.svg
(4.6.12)
CDel label6.pngCDel branch 11.pngCDel 3b.pngCDel nodeb 1.png
(1)
Uniform tiling 63-t012.svg
(4.6.12)
CDel label6.pngCDel branch 11.pngCDel 3a.pngCDel nodea 1.png
Uniform t0123 6343 honeycomb verf.png
Alternated forms
# Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
Vertex figure
0
CDel nodea.pngCDel 3a.pngCDel branch.pngCDel label4.png
1
CDel nodeb.pngCDel 3b.pngCDel branch.pngCDel label4.png
2
CDel label6.pngCDel branch.pngCDel 3b.pngCDel nodeb.png
3
CDel label6.pngCDel branch.pngCDel 3a.pngCDel nodea.png
Alt
Nonuniform cyclosnub octahedral-hexagonal
CDel label6.pngCDel branch h0r.pngCDel 3ab.pngCDel branch h0l.pngCDel label4.png
Uniform polyhedron-33-s012.png
(3.3.3.3.3)
CDel nodea h.pngCDel 3a.pngCDel branch h0.pngCDel label4.png
Uniform polyhedron-33-t0.png
(3.3.3)
CDel nodeb.pngCDel 3b.pngCDel branch h0l.pngCDel label4.png
Uniform tiling 333-t1.png
(3.3.3.3.3.3)
CDel label6.pngCDel branch h0r.pngCDel 3b.pngCDel nodeb.png
Uniform tiling 63-h12.png
(3.3.3.3.3.3)
CDel label6.pngCDel branch h0.pngCDel 3a.pngCDel nodea h.png
Trigonal antiprism.png
irr. {3,4}
Cyclosnub cubic-hexagonal honeycomb vertex figure.png
Nonuniform omnisnub octahedral-hexagonal
CDel label6.pngCDel branch hh.pngCDel 3ab.pngCDel branch hh.pngCDel label4.png
Uniform polyhedron-43-s012.png
(3.3.3.3.4)
CDel nodea h.pngCDel 3a.pngCDel branch hh.pngCDel label4.png
Uniform polyhedron-43-s012.png
(3.3.3.3.4)
CDel nodeb h.pngCDel 3b.pngCDel branch hh.pngCDel label4.png
Uniform tiling 63-snub.png
(3.3.3.3.6)
CDel label6.pngCDel branch hh.pngCDel 3b.pngCDel nodeb h.png
Uniform tiling 63-snub.png
(3.3.3.3.6)
CDel label6.pngCDel branch hh.pngCDel 3a.pngCDel nodea h.png
Tetrahedron.png
irr. {3,3}
Snub 6343 honeycomb verf.png

[(6,3,5,3)] family

There are 9 forms, generated by ring permutations of the Coxeter group: CDel label6.pngCDel branch.pngCDel 3ab.pngCDel branch.pngCDel label5.png

# Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
Vertex figure Picture
0
CDel nodea.pngCDel 3a.pngCDel branch.pngCDel label5.png
1
CDel nodeb.pngCDel 3b.pngCDel branch.pngCDel label5.png
2
CDel label6.pngCDel branch.pngCDel 3b.pngCDel nodeb.png
3
CDel label6.pngCDel branch.pngCDel 3a.pngCDel nodea.png
123 icosahedral-hexagonal
CDel label6.pngCDel branch 10r.pngCDel 3ab.pngCDel branch.pngCDel label5.png
(6)
Icosahedron.png
(3.3.3.3.3)
- (8)
Uniform tiling 63-t0.png
(6.6.6)
(12)
Uniform tiling 63-t1.png
(3.6.3.6)
Uniform polyhedron-53-t02.png
3.4.5.4
124 dodecahedral-triangular
CDel label6.pngCDel branch.pngCDel 3ab.pngCDel branch 10l.pngCDel label5.png
(30)
Icosidodecahedron.png
(3.5.3.5)
(20)
Dodecahedron.png
(5.5.5)
- (12)
Uniform tiling 63-t2.png
(3.3.3.3.3.3)
Uniform tiling 63-t02.png
(3.4.6.4)
125 cyclotruncated icosahedral-hexagonal
CDel label6.pngCDel branch 10r.pngCDel 3ab.pngCDel branch 10l.pngCDel label5.png
(3)
Truncated icosahedron.png
(5.6.6)
(1)
Dodecahedron.png
(5.5.5)
(1)
Uniform tiling 63-t0.png
(6.6.6)
(3)
Uniform tiling 63-t12.png
(6.6.6)
Uniform t12 6353 honeycomb verf.png
126 cyclotruncated hexagonal-icosahedral
CDel label6.pngCDel branch 11.pngCDel 3ab.pngCDel branch.pngCDel label5.png
(1)
Icosahedron.png
(3.3.3.3.3)
(1)
Icosahedron.png
(3.3.3.3.3)
(5)
Uniform tiling 63-t01.png
(3.12.12)
(5)
Uniform tiling 63-t01.png
(3.12.12)
Uniform t01 6353 honeycomb verf.png
127 cyclotruncated dodecahedral-triangular
CDel label6.pngCDel branch.pngCDel 3ab.pngCDel branch 11.pngCDel label5.png
(6)
Truncated dodecahedron.png
(3.10.10)
(6)
Truncated dodecahedron.png
(3.10.10)
(1)
Uniform tiling 63-t2.png
(3.3.3.3.3.3)
(1)
Uniform tiling 63-t2.png
(3.3.3.3.3.3)
Uniform t23 6353 honeycomb verf.png
128 rectified icosahedral-hexagonal
CDel label6.pngCDel branch 01r.pngCDel 3ab.pngCDel branch 10l.pngCDel label5.png
(1)
Icosidodecahedron.png
(3.5.3.5)
(2)
Small rhombicosidodecahedron.png
(3.4.5.4)
(1)
Uniform tiling 63-t1.png
(3.6.3.6)
(2)
Uniform tiling 63-t02.png
(3.4.6.4)
Uniform t02 6353 honeycomb verf.png
129 truncated icosahedral-hexagonal
CDel label6.pngCDel branch 11.pngCDel 3ab.pngCDel branch 10l.pngCDel label5.png
(1)
Truncated icosahedron.png
(5.6.6)
(1)
Small rhombicosidodecahedron.png
(3.5.5.5)
(1)
Uniform tiling 63-t01.png
(3.12.12)
(2)
Uniform tiling 63-t012.svg
(4.6.12)
Uniform t012 6353 honeycomb verf.png
130 truncated dodecahedral-triangular
CDel label6.pngCDel branch 10r.pngCDel 3ab.pngCDel branch 11.pngCDel label5.png
(2)
Great rhombicosidodecahedron.png
(4.6.10)
(1)
Truncated dodecahedron.png
(3.10.10)
(1)
Uniform tiling 63-t02.png
(3.4.6.4)
(1)
Uniform tiling 63-t12.png
(6.6.6)
Uniform t123 6353 honeycomb verf.png
131 omnitruncated icosahedral-hexagonal
CDel label6.pngCDel branch 11.pngCDel 3ab.pngCDel branch 11.pngCDel label5.png
(1)
Great rhombicosidodecahedron.png
(4.6.10)
(1)
Great rhombicosidodecahedron.png
(4.6.10)
(1)
Uniform tiling 63-t012.svg
(4.6.12)
(1)
Uniform tiling 63-t012.svg
(4.6.12)
Uniform t0123 6353 honeycomb verf.png
Alternated forms
# Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
Vertex figure Picture
0
CDel nodea.pngCDel 3a.pngCDel branch.pngCDel label5.png
1
CDel nodeb.pngCDel 3b.pngCDel branch.pngCDel label5.png
2
CDel label6.pngCDel branch.pngCDel 3b.pngCDel nodeb.png
3
CDel label6.pngCDel branch.pngCDel 3a.pngCDel nodea.png
Alt
Nonuniform omnisnub icosahedral-hexagonal
CDel label6.pngCDel branch hh.pngCDel 3ab.pngCDel branch hh.pngCDel label5.png
Snub dodecahedron cw.png
(3.3.3.3.5)
Snub dodecahedron cw.png
(3.3.3.3.5)
Uniform tiling 63-snub.png
(3.3.3.3.6)
Uniform tiling 63-snub.png
(3.3.3.3.6)
Tetrahedron.png
+(3.3.3)
Snub 6353 honeycomb verf.png

[(6,3,6,3)] family

There are 6 forms, generated by ring permutations of the Coxeter group: CDel label6.pngCDel branch.pngCDel 3ab.pngCDel branch.pngCDel label6.png.

# Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
Vertex figure Picture
0
CDel nodea.pngCDel 3a.pngCDel branch.pngCDel label6.png
1
CDel nodeb.pngCDel 3b.pngCDel branch.pngCDel label6.png
2
CDel label6.pngCDel branch.pngCDel 3b.pngCDel nodeb.png
3
CDel label6.pngCDel branch.pngCDel 3a.pngCDel nodea.png
132 hexagonal-triangular
CDel label6.pngCDel branch 10r.pngCDel 3ab.pngCDel branch.pngCDel label6.png
Uniform tiling 63-t2.png
(3.3.3.3.3.3)
- Uniform tiling 63-t0.png
(6.6.6)
Uniform tiling 63-t1.png
(3.6.3.6)
Uniform tiling 63-t02.png
(3.4.6.4)
133 cyclotruncated hexagonal-triangular
CDel label6.pngCDel branch 11.pngCDel 3ab.pngCDel branch.pngCDel label6.png
(1)
Uniform tiling 63-t2.png
(3.3.3.3.3.3)
(1)
Uniform tiling 63-t2.png
(3.3.3.3.3.3)
(3)
Uniform tiling 63-t01.png
(3.12.12)
(3)
Uniform tiling 63-t01.png
(3.12.12)
Uniform t01 6363 honeycomb verf.png
134 cyclotruncated triangular-hexagonal
CDel label6.pngCDel branch 01r.pngCDel 3ab.pngCDel branch 10l.pngCDel label6.png
(1)
Uniform tiling 63-t1.png
(3.6.3.6)
(2)
Uniform tiling 63-t02.png
(3.4.6.4)
(1)
Uniform tiling 63-t1.png
(3.6.3.6)
(2)
Uniform tiling 63-t02.png
(3.4.6.4)
Uniform t02 6363 honeycomb verf.png
135 rectified hexagonal-triangular
CDel label6.pngCDel branch 11.pngCDel 3ab.pngCDel branch 10l.pngCDel label6.png
(1)
Uniform tiling 63-t12.png
(6.6.6)
(1)
Uniform tiling 63-t02.png
(3.4.6.4)
(1)
Uniform tiling 63-t01.png
(3.12.12)
(2)
Uniform tiling 63-t012.svg
(4.6.12)
Uniform t012 6363 honeycomb verf.png
136 truncated hexagonal-triangular
CDel label6.pngCDel branch 11.pngCDel 3ab.pngCDel branch 11.pngCDel label6.png
(1)
Uniform tiling 63-t012.svg
(4.6.12)
(1)
Uniform tiling 63-t012.svg
(4.6.12)
(1)
Uniform tiling 63-t012.svg
(4.6.12)
(1)
Uniform tiling 63-t012.svg
(4.6.12)
Uniform t0123 6363 honeycomb verf.png
[16] order-4 hexagonal tiling
CDel label6.pngCDel branch 10r.pngCDel 3ab.pngCDel branch 10l.pngCDel label6.png
=CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
(3)
Uniform tiling 63-t12.png
(6.6.6)
(1)
Uniform tiling 63-t0.png
(6.6.6)
(1)
Uniform tiling 63-t0.png
(6.6.6)
(3)
Uniform tiling 63-t12.png
(6.6.6)
Uniform t12 6363 honeycomb verf.png
(3.3.3.3)
H3 634 FC boundary.png
Alternated forms
# Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
Vertex figure Picture
0
CDel nodea.pngCDel 3a.pngCDel branch.pngCDel label6.png
1
CDel nodeb.pngCDel 3b.pngCDel branch.pngCDel label6.png
2
CDel label6.pngCDel branch.pngCDel 3b.pngCDel nodeb.png
3
CDel label6.pngCDel branch.pngCDel 3a.pngCDel nodea.png
Alt
[141] alternated order-4 hexagonal
CDel label6.pngCDel branch h0r.pngCDel 3ab.pngCDel branch h0l.pngCDel label6.pngCDel branch 10ru.pngCDel split2.pngCDel node.pngCDel 4.pngCDel node.pngCDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel node.pngCDel split1.pngCDel branch 10luru.pngCDel split2.pngCDel node.png
Uniform tiling 63-h12.png
(3.3.3.3.3.3)
Uniform tiling 333-t1.png
(3.3.3.3.3.3)
Uniform tiling 333-t1.png
(3.3.3.3.3.3)
Uniform tiling 63-h12.png
(3.3.3.3.3.3)
Uniform polyhedron-33-t1.png
+(3.3.3.3)
Uniform polyhedron-33-t012.png
(4.6.6)
Nonuniform cyclocantisnub hexagonal-triangular
CDel branch hh.pngCDel 6a6b.pngCDel branch 10l.png
Nonuniform cycloruncicantisnub hexagonal-triangular
CDel branch hh.pngCDel 6a6b.pngCDel branch 11.png
Nonuniform snub rectified hexagonal-triangular
CDel label6.pngCDel branch hh.pngCDel 3ab.pngCDel branch hh.pngCDel label6.png
Uniform tiling 63-snub.png
(3.3.3.3.6)
Uniform tiling 63-snub.png
(3.3.3.3.6)
Uniform tiling 63-snub.png
(3.3.3.3.6)
Uniform tiling 63-snub.png
(3.3.3.3.6)
Uniform polyhedron-33-t0.png
+(3.3.3)
Snub 6363 honeycomb verf.png

Loop-n-tail graphs

[3,3[3]] family

There are 11 forms, 4 unique, generated by ring permutations of the Coxeter group: [3,3[3]] or CDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel branch.png. 7 are half symmetry forms of [3,3,6]: CDel node c1.pngCDel 3.pngCDel node c2.pngCDel split1.pngCDel branch c3.pngCDel node c1.pngCDel 3.pngCDel node c2.pngCDel 3.pngCDel node c3.pngCDel 6.pngCDel node h0.png.

# Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
vertex figure Picture
0
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
1
CDel branch.pngCDel 2.pngCDel node.png
0'
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
3
CDel branch.pngCDel split2.pngCDel node.png
137 alternated hexagonal
(CDel branch 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png) = CDel branch hh.pngCDel splitcross.pngCDel branch hh.png
- - Uniform polyhedron-33-t2.png
(3.3.3)
Uniform tiling 333-t0.png
(3.3.3.3.3.3)
Uniform polyhedron-33-t01.png CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
(3.6.6)
138 cantic hexagonal
CDel branch 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
(1)
Uniform polyhedron-33-t1.png
(3.3.3.3)
- (2)
Uniform polyhedron-33-t12.png
(3.6.6)
(2)
Uniform tiling 333-t01.png
(3.6.3.6)
Cantic hexagonal tiling honeycomb verf.png
139 runcic hexagonal
CDel branch 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
(1)
Uniform polyhedron-33-t0.png
(4.4.4)
(1)
Triangular prism.png
(4.4.3)
(3)
Uniform polyhedron-33-t02.png
(3.4.3.4)
(1)
Uniform tiling 333-t0.png
(3.3.3.3.3.3)
Runcic hexagonal tiling honeycomb verf.png
140 runcicantic hexagonal
CDel branch 10ru.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
(1)
Uniform polyhedron-33-t01.png
(3.10.10)
(1)
Triangular prism.png
(4.4.3)
(2)
Uniform polyhedron-33-t012.png
(4.6.6)
(1)
Uniform tiling 333-t01.png
(3.6.3.6)
Runcicantic hexagonal tiling honeycomb verf.png
[2] rectified hexagonal
CDel branch 11.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel node h0.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
(1)
Uniform polyhedron-33-t2.png
(3.3.3)
- (1)
Uniform polyhedron-33-t2.png
(3.3.3)
(6)
Uniform tiling 333-t01.png
(3.6.3.6)
Rectified order-3 hexagonal tiling honeycomb verf.png CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 3.pngCDel node.png
Triangular prism
H3 633 boundary 0100.png
[3] rectified order-6 tetrahedral
CDel branch.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel node h0.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
(2)
Uniform polyhedron-33-t1.png
(3.3.3.3)
- (2)
Uniform polyhedron-33-t1.png
(3.3.3.3)
(2)
Uniform tiling 333-t0.png
(3.3.3.3.3.3)
Rectified order-6 tetrahedral honeycomb verf.png CDel node.pngCDel 6.pngCDel node 1.pngCDel 2.pngCDel node 1.png
Hexagonal prism
H3 336 CC center 0100.png
[4] order-6 tetrahedral
CDel branch.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel node h0.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
(4)
Uniform polyhedron-33-t0.png
(4.4.4)
- (4)
Uniform polyhedron-33-t0.png
(4.4.4)
- Uniform tiling 63-t2.png CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.png H3 336 CC center.png
[8] cantellated order-6 tetrahedral
CDel branch 11.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel node h0.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
(1)
Uniform polyhedron-33-t02.png
(3.3.3.3)
(2)
Hexagonal prism.png
(4.4.6)
(1)
Uniform polyhedron-33-t02.png
(3.3.3.3)
(1)
Uniform tiling 333-t01.png
(3.6.3.6)
Cantellated order-3 hexagonal tiling honeycomb verf.png H3 633-0101.png
[9] bitruncated order-6 tetrahedral
CDel branch 11.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel node h0.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
(1)
Uniform polyhedron-33-t12.png
(3.6.6)
- (1)
Uniform polyhedron-33-t12.png
(3.6.6)
(2)
Uniform tiling 333-t012.png
(6.6.6)
Bitruncated order-3 hexagonal tiling honeycomb verf.png H3 633-0110.png
[10] truncated order-6 tetrahedral
CDel branch.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel node h0.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
(2)
Uniform polyhedron-33-t01.png
(3.10.10)
- (2)
Uniform polyhedron-33-t01.png
(3.10.10)
(1)
Uniform tiling 333-t01.png
(3.6.3.6)
Truncated order-6 tetrahedral honeycomb verf.png H3 633-0011.png
[14] cantitruncated order-6 tetrahedral
CDel branch 11.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel node h0.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
(1)
Uniform polyhedron-33-t012.png
(4.6.6)
(1)
Hexagonal prism.png
(4.4.6)
(1)
Uniform polyhedron-33-t012.png
(4.6.6)
(1)
Uniform tiling 333-t012.png
(6.6.6)
Cantitruncated order-3 hexagonal tiling honeycomb verf.png H3 633-0111.png
Alternated forms
# Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
vertex figure
0
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
1
CDel branch.pngCDel 2.pngCDel node.png
0'
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
3
CDel branch.pngCDel split2.pngCDel node.png
Alt
Nonuniform snub rectified order-6 tetrahedral
CDel branch hh.pngCDel split2.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel node h0.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 3.pngCDel node h.png
Uniform polyhedron-33-s012.png
(3.3.3.3.3)
Trigonal antiprism.png
(3.3.3.3)
Uniform polyhedron-33-s012.png
(3.3.3.3.3)
Uniform tiling 333-snub.png
(3.3.3.3.3.3)
Uniform polyhedron-33-t2.png
+(3.3.3)
Alternated cantitruncated order-6 tetrahedral honeycomb vertex figure.png

[4,3[3]] family

There are 11 forms, 4 unique, generated by ring permutations of the Coxeter group: [4,3[3]] or CDel node.pngCDel 4.pngCDel node.pngCDel split1.pngCDel branch.png. 7 are half symmetry forms of [4,3,6]: CDel node c1.pngCDel 4.pngCDel node c2.pngCDel split1.pngCDel branch c3.pngCDel node c1.pngCDel 4.pngCDel node c2.pngCDel 3.pngCDel node c3.pngCDel 6.pngCDel node h0.png.

# Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
vertex figure Picture
0
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 4a.pngCDel nodea.png
1
CDel branch.pngCDel 2.pngCDel node.png
0'
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 4a.pngCDel nodea.png
3
CDel branch.pngCDel split2.pngCDel node.png
141 alternated order-4 hexagonal
CDel branch 10ru.pngCDel split2.pngCDel node.pngCDel 4.pngCDel node.pngCDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
- - Uniform polyhedron-43-t2.png
(3.3.3.3)
Uniform tiling 333-t0.png
(3.3.3.3.3.3)
Uniform polyhedron-43-t12.png CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
(4.6.6)
142 cantic order-4 hexagonal
CDel branch 10ru.pngCDel split2.pngCDel node 1.pngCDel 4.pngCDel node h0.pngCDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node h0.pngCDel node 1.pngCDel split1.pngCDel branch 10luru.pngCDel split2.pngCDel node 1.png
(1)
Uniform polyhedron-43-t1.png
(3.4.3.4)
- (2)
Uniform polyhedron-43-t12.png
(4.6.6)
(2)
Uniform tiling 333-t01.png
(3.6.3.6)
Cantic order-4 hexagonal tiling honeycomb verf.png
143 runcic order-4 hexagonal
CDel branch 10ru.pngCDel split2.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
(1)
Uniform polyhedron-43-t0.png
(4.4.4)
(1)
Triangular prism.png
(4.4.3)
(3)
Uniform polyhedron-43-t02.png
(3.4.4.4)
(1)
Uniform tiling 333-t0.png
(3.3.3.3.3.3)
Runcic order-4 hexagonal tiling honeycomb verf.png
144 runcicantic order-4 hexagonal
CDel branch 10ru.pngCDel split2.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png
(1)
Uniform polyhedron-43-t01.png
(3.8.8)
(1)
Triangular prism.png
(4.4.3)
(2)
Uniform polyhedron-43-t012.png
(4.6.8)
(1)
Uniform tiling 333-t01.png
(3.6.3.6)
Runcicantic order-4 hexagonal tiling honeycomb verf.png
[16] order-4 hexagonal
CDel branch.pngCDel split2.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel node h0.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
(4)
Uniform polyhedron-43-t0.png
(4.4.4)
- (4)
Uniform polyhedron-43-t0.png
(4.4.4)
- Order-4 hexagonal tiling honeycomb verf.png H3 634 FC boundary.png
[17] rectified order-4 hexagonal
CDel branch 11.pngCDel split2.pngCDel node.pngCDel 4.pngCDel node.pngCDel node h0.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
(1)
Uniform polyhedron-43-t2.png
(3.3.3.3)
- (1)
Uniform polyhedron-43-t2.png
(3.3.3.3)
(6)
Uniform tiling 333-t01.png
(3.6.3.6)
Rectified order-4 hexagonal tiling honeycomb verf.png H3 634 boundary 0100.png
[18] rectified order-6 cubic
CDel branch.pngCDel split2.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel node h0.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
(2)
Uniform polyhedron-43-t1.png
(3.4.3.4)
- (2)
Uniform polyhedron-43-t1.png
(3.4.3.4)
(2)
Uniform tiling 333-t0.png
(3.3.3.3.3.3)
Rectified order-6 cubic honeycomb verf.png H3 436 CC center 0100.png
[21] bitruncated order-4 hexagonal
CDel branch 11.pngCDel split2.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel node h0.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
(1)
Uniform polyhedron-43-t12.png
(4.6.6)
- (1)
Uniform polyhedron-43-t12.png
(4.6.6)
(2)
Uniform tiling 333-t012.png
(6.6.6)
Bitruncated order-4 hexagonal tiling honeycomb verf.png H3 634-0110.png
[22] truncated order-6 cubic
CDel branch.pngCDel split2.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel node h0.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png
(2)
Uniform polyhedron-43-t01.png
(3.8.8)
- (2)
Uniform polyhedron-43-t01.png
(3.8.8)
(1)
Uniform tiling 333-t01.png
(3.6.3.6)
Truncated order-6 cubic honeycomb verf.png H3 634-0011.png
[23] cantellated order-4 hexagonal
CDel branch 11.pngCDel split2.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel node h0.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
(1)
Uniform polyhedron-43-t02.png
(3.4.4.4)
(2)
Hexagonal prism.png
(4.4.6)
(1)
Uniform polyhedron-43-t02.png
(3.4.4.4)
(1)
Uniform tiling 333-t01.png
(3.6.3.6)
Cantellated order-4 hexagonal tiling honeycomb verf.png H3 634-1010.png
[26] cantitruncated order-4 hexagonal
CDel branch 11.pngCDel split2.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel node h0.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png
(1)
Uniform polyhedron-43-t012.png
(4.6.8)
(1)
Hexagonal prism.png
(4.4.6)
(1)
Uniform polyhedron-43-t012.png
(4.6.8)
(1)
Uniform tiling 333-t012.png
(6.6.6)
Cantitruncated order-4 hexagonal tiling honeycomb verf.png H3 634-1110.png
Alternated forms
# Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
vertex figure
0
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 4a.pngCDel nodea.png
1
CDel branch.pngCDel 2.pngCDel node.png
0'
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 4a.pngCDel nodea.png
3
CDel branch.pngCDel split2.pngCDel node.png
Alt
Nonuniform snub rectified order-4 hexagonal
CDel branch hh.pngCDel split2.pngCDel node h.pngCDel 4.pngCDel node h.pngCDel node h0.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node h.png
Uniform polyhedron-43-s012.png
(3.3.3.3.4)
Trigonal antiprism.png
(3.3.3.3)
Uniform polyhedron-43-s012.png
(3.3.3.3.4)
Uniform tiling 333-snub.png
(3.3.3.3.3.3)
Uniform polyhedron-33-t2.png
+(3.3.3)

[5,3[3]] family

There are 11 forms, 4 unique, generated by ring permutations of the Coxeter group: [5,3[3]] or CDel node.pngCDel 5.pngCDel node.pngCDel split1.pngCDel branch.png. 7 are half symmetry forms of [5,3,6]: CDel node c1.pngCDel 5.pngCDel node c2.pngCDel split1.pngCDel branch c3.pngCDel node c1.pngCDel 5.pngCDel node c2.pngCDel 3.pngCDel node c3.pngCDel 6.pngCDel node h0.png.

# Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
vertex figure Picture
0
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 5a.pngCDel nodea.png
1
CDel branch.pngCDel 2.pngCDel node.png
0'
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 5a.pngCDel nodea.png
3
CDel branch.pngCDel split2.pngCDel node.png
145 alternated order-5 hexagonal
CDel branch 10ru.pngCDel split2.pngCDel node.pngCDel 5.pngCDel node.pngCDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
- - Uniform polyhedron-53-t2.png
(3.3.3.3.3)
Uniform tiling 333-t0.png
(3.3.3.3.3.3)
Uniform tiling 63-t1.png CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.png
(3.6.3.6)
146 cantic order-5 hexagonal
CDel branch 10ru.pngCDel split2.pngCDel node 1.pngCDel 5.pngCDel node.pngCDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node.png
(1)
Uniform polyhedron-53-t1.png
(3.5.3.5)
- (2)
Uniform polyhedron-53-t12.png
(5.6.6)
(2)
Uniform tiling 333-t01.png
(3.6.3.6)
Cantic order-5 hexagonal tiling honeycomb verf.png
147 runcic order-5 hexagonal
CDel branch 10ru.pngCDel split2.pngCDel node.pngCDel 5.pngCDel node 1.pngCDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node 1.png
(1)
Uniform polyhedron-53-t0.png
(5.5.5)
(1)
Triangular prism.png
(4.4.3)
(3)
Uniform polyhedron-53-t02.png
(3.4.5.4)
(1)
Uniform tiling 333-t0.png
(3.3.3.3.3.3)
Runcic order-5 hexagonal tiling honeycomb verf.png
148 runcicantic order-5 hexagonal
CDel branch 10ru.pngCDel split2.pngCDel node 1.pngCDel 5.pngCDel node 1.pngCDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node 1.png
(1)
Uniform polyhedron-53-t01.png
(3.10.10)
(1)
Triangular prism.png
(4.4.3)
(2)
Uniform polyhedron-53-t012.png
(4.6.10)
(1)
Uniform tiling 333-t01.png
(3.6.3.6)
Runcicantic order-5 hexagonal tiling honeycomb verf.png
[32] rectified order-5 hexagonal
CDel branch 11.pngCDel split2.pngCDel node.pngCDel 5.pngCDel node.pngCDel node h0.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
(1)
Uniform polyhedron-53-t2.png
(3.3.3.3.3)
- (1)
Uniform polyhedron-53-t2.png
(3.3.3.3.3)
(6)
Uniform tiling 333-t01.png
(3.6.3.6)
Rectified order-5 hexagonal tiling honeycomb verf.png H3 635 boundary 0100.png
[33] rectified order-6 dodecahedral
CDel branch.pngCDel split2.pngCDel node 1.pngCDel 5.pngCDel node.pngCDel node h0.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node.png
(2)
Uniform polyhedron-53-t1.png
(3.5.3.5)
- (2)
Uniform polyhedron-53-t1.png
(3.5.3.5)
(2)
Uniform tiling 333-t0.png
(3.3.3.3.3.3)
Rectified order-6 dodecahedral honeycomb verf.png H3 536 CC center 0100.png
[34] Order-5 hexagonal
CDel branch.pngCDel split2.pngCDel node.pngCDel 5.pngCDel node 1.pngCDel node h0.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node 1.png
(4)
Uniform polyhedron-53-t0.png
(5.5.5)
- (4)
Uniform polyhedron-53-t0.png
(5.5.5)
- Order-5 hexagonal tiling honeycomb verf.png H3 635 FC boundary.png
[35] truncated order-6 dodecahedral
CDel branch.pngCDel split2.pngCDel node 1.pngCDel 5.pngCDel node 1.pngCDel node h0.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node 1.png
(2)
Uniform polyhedron-53-t01.png
(3.10.10)
- (2)
Uniform polyhedron-53-t01.png
(3.10.10)
(1)
Uniform tiling 333-t01.png
(3.6.3.6)
Truncated order-6 dodecahedral honeycomb verf.png H3 635-1100.png
[38] cantellated order-5 hexagonal
CDel branch 11.pngCDel split2.pngCDel node.pngCDel 5.pngCDel node 1.pngCDel node h0.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node 1.png
(1)
Uniform polyhedron-53-t02.png
(3.4.5.4)
(2)
Hexagonal prism.png
(6.4.4)
(1)
Uniform polyhedron-53-t02.png
(3.4.5.4)
(1)
Uniform tiling 333-t01.png
(3.6.3.6)
Cantellated order-5 hexagonal tiling honeycomb verf.png H3 635-0101.png
[39] bitruncated order-5 hexagonal
CDel branch 11.pngCDel split2.pngCDel node 1.pngCDel 5.pngCDel node.pngCDel node h0.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node.png
(1)
Uniform polyhedron-53-t12.png
(5.6.6)
- (1)
Uniform polyhedron-53-t12.png
(5.6.6)
(2)
Uniform tiling 333-t012.png
(6.6.6)
Bitruncated order-5 hexagonal tiling honeycomb verf.png H3 635-0110.png
[44] cantitruncated order-5 hexagonal
CDel branch 11.pngCDel split2.pngCDel node 1.pngCDel 5.pngCDel node 1.pngCDel node h0.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node 1.png
(1)
Uniform polyhedron-53-t012.png
(4.6.10)
(1)
Hexagonal prism.png
(6.4.4)
(1)
Uniform polyhedron-53-t012.png
(4.6.10)
(1)
Uniform tiling 333-t012.png
(6.6.6)
Cantitruncated order-5 hexagonal tiling honeycomb verf.png H3 635-0111.png
Alternated forms
# Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
vertex figure Picture
0
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 5a.pngCDel nodea.png
1
CDel branch.pngCDel 2.pngCDel node.png
0'
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 5a.pngCDel nodea.png
3
CDel branch.pngCDel split2.pngCDel node.png
Alt
Nonuniform snub rectified order-5 hexagonal
CDel branch hh.pngCDel split2.pngCDel node h.pngCDel 5.pngCDel node h.pngCDel node h0.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 5.pngCDel node h.png
Uniform polyhedron-53-s012.png
(3.3.3.3.5)
Uniform polyhedron-33-t0.png
(3.3.3)
Uniform polyhedron-53-s012.png
(3.3.3.3.5)
Uniform tiling 333-snub.png
(3.3.3.3.3.3)
Uniform polyhedron-33-t2.png
+(3.3.3)

[6,3[3]] family

There are 11 forms, 4 unique, generated by ring permutations of the Coxeter group: [6,3[3]] or CDel branch.pngCDel split2.pngCDel node.pngCDel 6.pngCDel node.png. 7 are half symmetry forms of [6,3,6]: CDel node c1.pngCDel 6.pngCDel node c2.pngCDel split1.pngCDel branch c3.pngCDel node c1.pngCDel 6.pngCDel node c2.pngCDel 3.pngCDel node c3.pngCDel 6.pngCDel node h0.png.

# Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
vertex figure Picture
0
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 6a.pngCDel nodea.png
1
CDel branch.pngCDel 2.pngCDel node.png
0'
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 6a.pngCDel nodea.png
3
CDel branch.pngCDel split2.pngCDel node.png
149 runcic order-6 hexagonal
CDel branch 10ru.pngCDel split2.pngCDel node.pngCDel 6.pngCDel node 1.pngCDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node 1.png
(1)
Uniform tiling 63-t0.png
(6.6.6)
(1)
Triangular prism.png
(4.4.3)
(3)
Uniform tiling 63-t02.png
(3.4.6.4)
(1)
Uniform tiling 333-t0.png
(3.3.3.3.3.3)
Runcic order-6 hexagonal tiling honeycomb verf.png
150 runcicantic order-6 hexagonal
CDel branch 10ru.pngCDel split2.pngCDel node 1.pngCDel 6.pngCDel node 1.pngCDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node 1.png
(1)
Uniform tiling 63-t01.png
(3.12.12)
(1)
Triangular prism.png
(4.4.3)
(2)
Uniform tiling 63-t012.svg
(4.6.12)
(1)
Uniform tiling 333-t01.png
(3.6.3.6)
Runcicantic order-6 hexagonal tiling honeycomb verf.png
[1] hexagonal
CDel branch 11.pngCDel split2.pngCDel node 1.pngCDel 6.pngCDel node h0.pngCDel node h0.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node h0.pngCDel branch 11.pngCDel splitcross.pngCDel branch 11.pngCDel node 1.pngCDel 6.pngCDel node g.pngCDel 3sg.pngCDel node g.pngCDel 3g.pngCDel node g.png
(1)
Uniform tiling 63-t12.png
(6.6.6)
- (1)
Uniform tiling 63-t12.png
(6.6.6)
(2)
Uniform tiling 333-t012.png
(6.6.6)
Order-3 hexagonal tiling honeycomb verf.png H3 633 FC boundary.png
[46] order-6 hexagonal
CDel branch.pngCDel split2.pngCDel node.pngCDel 6.pngCDel node 1.pngCDel node h0.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node 1.png
(4)
Uniform tiling 63-t0.png
(6.6.6)
- (4)
Uniform tiling 63-t0.png
(6.6.6)
- Uniform tiling 333-t0.png H3 636 FC boundary.png
[47] rectified order-6 hexagonal
CDel branch.pngCDel split2.pngCDel node 1.pngCDel 6.pngCDel node.pngCDel node h0.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node.png
(2)
Uniform tiling 63-t1.png
(3.6.3.6)
- (2)
Uniform tiling 63-t1.png
(3.6.3.6)
(2)
Uniform tiling 333-t0.png
(3.3.3.3.3.3)
Rectified order-6 hexagonal tiling honeycomb verf.png H3 636 boundary 0100.png
[47] rectified order-6 hexagonal
CDel branch 11.pngCDel split2.pngCDel node.pngCDel 6.pngCDel node.pngCDel node h0.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
(1)
Uniform tiling 63-t2.png
(3.3.3.3.3.3)
- (1)
Uniform tiling 63-t2.png
(3.3.3.3.3.3)
(6)
Uniform tiling 333-t01.png
(3.6.3.6)
Rectified order-6 hexagonal tiling honeycomb verf.png H3 636 boundary 0100.png
[48] truncated order-6 hexagonal
CDel branch.pngCDel split2.pngCDel node 1.pngCDel 6.pngCDel node 1.pngCDel node h0.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node 1.png
(2)
Uniform tiling 63-t01.png
(3.12.12)
- (2)
Uniform tiling 63-t01.png
(3.12.12)
(1)
Uniform tiling 333-t0.png
(3.3.3.3.3.3)
Truncated order-6 hexagonal tiling honeycomb verf.png H3 636-1100.png
[49] cantellated order-6 hexagonal
CDel branch 11.pngCDel split2.pngCDel node.pngCDel 6.pngCDel node 1.pngCDel node h0.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node 1.png
(1)
Uniform tiling 63-t02.png
(3.4.6.4)
(2)
Hexagonal prism.png
(6.4.4)
(1)
Uniform tiling 63-t02.png
(3.4.6.4)
(1)
Uniform tiling 333-t01.png
(3.6.3.6)
Cantellated order-6 hexagonal tiling honeycomb verf.png H3 636-1010.png
[51] cantitruncated order-6 hexagonal
CDel branch 11.pngCDel split2.pngCDel node 1.pngCDel 6.pngCDel node 1.pngCDel node h0.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node 1.png
(1)
Uniform tiling 63-t012.svg
(4.6.12)
(1)
Hexagonal prism.png
(6.4.4)
(1)
Uniform tiling 63-t012.svg
(4.6.12)
(1)
Uniform tiling 333-t012.png
(6.6.6)
Cantitruncated order-6 hexagonal tiling honeycomb verf.png H3 636-1110.png
[54] triangular tiling honeycomb
( CDel branch 10ru.pngCDel split2.pngCDel node.pngCDel 6.pngCDel node.pngCDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png ) = CDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png
- - Uniform tiling 63-t2.png
(3.3.3.3.3.3)
Uniform tiling 333-t0.png
(3.3.3.3.3.3)
Uniform tiling 63-t12.png CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.png
(6.6.6)
H3 363 FC boundary.png
[55] cantic order-6 hexagonal
( CDel branch 10ru.pngCDel split2.pngCDel node 1.pngCDel 6.pngCDel node.pngCDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node.png ) = CDel node.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png
(1)
Uniform tiling 63-t1.png
(3.6.3.6)
- (2)
Uniform tiling 63-t12.png
(6.6.6)
(2)
Uniform tiling 333-t01.png
(3.6.3.6)
Cantic order-6 hexagonal tiling honeycomb verf.png H3 363 boundary 0100.png
Alternated forms
# Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
vertex figure Picture
0
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 6a.pngCDel nodea.png
1
CDel branch.pngCDel 2.pngCDel node.png
0'
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 6a.pngCDel nodea.png
3
CDel branch.pngCDel split2.pngCDel node.png
Alt
[54] triangular tiling honeycomb
( CDel branch.pngCDel split2.pngCDel node.pngCDel 6.pngCDel node h1.pngCDel node h0.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node h1.pngCDel node h0.pngCDel 6.pngCDel node.pngCDel split1.pngCDel branch 10lu.png ) = CDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png
Uniform tiling 333-t0.png
CDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node h1.png
- Uniform tiling 333-t1.png
CDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node h1.png
- Uniform tiling 333-t012.png Uniform tiling 63-t12.png CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.png
(6.6.6)
H3 363 FC boundary.png
[137] alternated hexagonal
( CDel branch hh.pngCDel split2.pngCDel node h.pngCDel 6.pngCDel node.pngCDel node h0.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node.png ) = ( CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel branch 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.png )
Uniform tiling 63-h12.png
CDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node.png
- Uniform tiling 63-h12.png
CDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node.png
Uniform tiling 333-snub.png
CDel branch hh.pngCDel split2.pngCDel node h.png
Uniform polyhedron-33-t12.png
+(3.6.6)
Uniform polyhedron-33-t01.png CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
(3.6.6)
[47] rectified order-6 hexagonal
CDel branch 10ru.pngCDel split2.pngCDel node.pngCDel 6.pngCDel node h1.pngCDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node h1.pngCDel node.pngCDel splitsplit1.pngCDel branch4 11.pngCDel splitsplit2.pngCDel node.pngCDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
Uniform tiling 63-t1.png
(3.6.3.6)
- Uniform tiling 63-t1.png
(3.6.3.6)
Uniform tiling 333-t0.png
(3.3.3.3.3.3)
Rectified order-6 hexagonal tiling honeycomb verf.png H3 636 boundary 0100.png
[55] cantic order-6 hexagonal
( CDel branch 11.pngCDel split2.pngCDel node.pngCDel 6.pngCDel node h1.pngCDel node h0.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node h1.png ) = ( CDel node h0.pngCDel 6.pngCDel node 1.pngCDel split1.pngCDel branch 10lu.pngCDel node 1.pngCDel splitsplit1.pngCDel branch4 11.pngCDel splitsplit2.pngCDel node.png ) = CDel node.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png
(1)
Uniform tiling 63-t1.png
(3.6.3.6)
- (2)
Uniform tiling 63-t12.png
(6.6.6)
(2)
Uniform tiling 333-t01.png
(3.6.3.6)
Rectified triangular tiling honeycomb verf.png H3 363 boundary 0100.png
Nonuniform snub rectified order-6 hexagonal
CDel branch hh.pngCDel split2.pngCDel node h.pngCDel 6.pngCDel node h.pngCDel node h0.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node h.png
CDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node h.png
Uniform tiling 63-snub.png
(3.3.3.3.6)
CDel branch hh.pngCDel 2x.pngCDel node h.png
Trigonal antiprism.png
(3.3.3.3)
CDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node h.png
Uniform tiling 63-snub.png
(3.3.3.3.6)
CDel branch hh.pngCDel split2.pngCDel node h.png
Uniform tiling 333-snub.png
(3.3.3.3.3.3)
Uniform polyhedron-33-t2.png
+(3.3.3)

Multicyclic graphs

[3[ ]×[ ]] family

There are 8 forms, 1 unique, generated by ring permutations of the Coxeter group: CDel node.pngCDel split1.pngCDel branch.pngCDel split2.pngCDel node.png. Two are duplicated as CDel node c1.pngCDel split1-44.pngCDel branch c3.pngCDel split2.pngCDel node c2.pngCDel node h0.pngCDel 6.pngCDel node c3.pngCDel split1.pngCDel nodeab c1-2.png, two as CDel node c3.pngCDel split1-44.pngCDel branch c1-2.pngCDel split2.pngCDel node c3.pngCDel node h0.pngCDel 4.pngCDel node c3.pngCDel split1.pngCDel branch c1-2.png, and three as CDel node c2.pngCDel split1.pngCDel branch c1.pngCDel split2.pngCDel node c2.pngCDel node h0.pngCDel 6.pngCDel node c1.pngCDel 3.pngCDel node c2.pngCDel 4.pngCDel node h0.png.

# Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
Vertex figure Picture
0
CDel branch.pngCDel split2.pngCDel node.png
1
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
2
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
3
CDel node.pngCDel split1.pngCDel branch.png
151 Quarter order-4 hexagonal
CDel node 1.pngCDel split1.pngCDel branch 10luru.pngCDel split2.pngCDel node.pngCDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h1.png
CDel branch 10ru.pngCDel split2.pngCDel node.png
Uniform tiling 333-t0.png
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
Uniform polyhedron-33-t0.png
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform polyhedron-33-t01.png
CDel node 1.pngCDel split1.pngCDel branch 10lu.png
Uniform tiling 333-t02.png
Paracompact honeycomb DP3 1100 verf.png
[17] rectified order-4 hexagonal
CDel node.pngCDel split1.pngCDel branch 11.pngCDel split2.pngCDel node.pngCDel node h0.pngCDel 6.pngCDel node 1.pngCDel split1.pngCDel nodes.pngCDel node h0.pngCDel 4.pngCDel node.pngCDel split1.pngCDel branch 11.pngCDel node h0.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h0.png
CDel branch 11.pngCDel split2.pngCDel node.png
Uniform tiling 333-t01.png
CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform polyhedron-33-t1.png
CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform polyhedron-33-t1.png
CDel node.pngCDel split1.pngCDel branch 11.png
Uniform tiling 333-t12.png
Rectified order-4 hexagonal tiling honeycomb verf.png CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 4.pngCDel node.png
(4.4.4)
H3 634 boundary 0100.png
[18] rectified order-6 cubic
CDel node 1.pngCDel split1.pngCDel branch.pngCDel split2.pngCDel node 1.pngCDel node h0.pngCDel 6.pngCDel node.pngCDel split1.pngCDel nodes 11.pngCDel node h0.pngCDel 4.pngCDel node 1.pngCDel split1.pngCDel branch.pngCDel node h0.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node h0.png
CDel branch.pngCDel split2.pngCDel node 1.png
Uniform tiling 333-t2.png
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-33-t02.png
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-33-t02.png
CDel node 1.pngCDel split1.pngCDel branch.png
Uniform tiling 333-t0.png
Rectified order-6 cubic honeycomb verf.png CDel node.pngCDel 6.pngCDel node 1.pngCDel 2.pngCDel node 1.png
(6.4.4)
H3 436 CC center 0100.png
[21] bitruncated order-6 cubic
CDel node 1.pngCDel split1.pngCDel branch 11.pngCDel split2.pngCDel node 1.pngCDel node h0.pngCDel 6.pngCDel node 1.pngCDel split1.pngCDel nodes 11.pngCDel node h0.pngCDel 4.pngCDel node 1.pngCDel split1.pngCDel branch 11.pngCDel node h0.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node h0.png
CDel branch 11.pngCDel split2.pngCDel node 1.png
Uniform tiling 333-t012.png
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-33-t012.png
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-33-t012.png
CDel node 1.pngCDel split1.pngCDel branch 11.png
Uniform tiling 333-t012.png
Bitruncated order-4 hexagonal tiling honeycomb verf.png H3 634-0110.png
[87] alternated order-6 cubic
CDel node 1.pngCDel split1.pngCDel branch.pngCDel split2.pngCDel node.pngCDel node h0.pngCDel 6.pngCDel node.pngCDel split1.pngCDel nodes 10lu.pngCDel node h0.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h1.png
- CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
Uniform polyhedron-33-t0.png
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
Uniform polyhedron-33-t0.png
CDel node 1.pngCDel split1.pngCDel branch.png
Uniform tiling 333-t0.png
Uniform tiling 333-t01.pngCDel branch 11.pngCDel split2.pngCDel node.png
(3.6.3.6)
[88] cantic order-6 cubic
CDel node 1.pngCDel split1.pngCDel branch 11.pngCDel split2.pngCDel node.pngCDel node h0.pngCDel 6.pngCDel node 1.pngCDel split1.pngCDel nodes 10lu.pngCDel node h0.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h1.png
CDel branch 11.pngCDel split2.pngCDel node.png
Uniform tiling 333-t01.png
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform polyhedron-33-t01.png
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform polyhedron-33-t01.png
CDel node 1.pngCDel split1.pngCDel branch 11.png
Uniform tiling 333-t012.png
Cantic order-6 cubic honeycomb verf.png
[141] alternated order-4 hexagonal
CDel node.pngCDel split1.pngCDel branch 10luru.pngCDel split2.pngCDel node.pngCDel node h0.pngCDel 4.pngCDel node.pngCDel split1.pngCDel branch 10lu.pngCDel node h0.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node h1.png
CDel branch 10ru.pngCDel split2.pngCDel node.png
Uniform tiling 333-t0.png
- CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform polyhedron-33-t1.png
CDel node.pngCDel split1.pngCDel branch 10lu.png
Uniform tiling 333-t1.png
Uniform polyhedron-33-t012.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
(4.6.6)
[142] cantic order-4 hexagonal
CDel node 1.pngCDel split1.pngCDel branch 10luru.pngCDel split2.pngCDel node 1.pngCDel node h0.pngCDel 4.pngCDel node 1.pngCDel split1.pngCDel branch 10lu.pngCDel node h0.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node h1.png
CDel branch 10ru.pngCDel split2.pngCDel node 1.png
Uniform tiling 333-t02.png
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-33-t02.png
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-33-t012.png
CDel node 1.pngCDel split1.pngCDel branch 10lu.png
Uniform tiling 333-t01.png
Cantic order-4 hexagonal tiling honeycomb verf.png
# Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
Vertex figure Picture
0
CDel branch.pngCDel split2.pngCDel node.png
1
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
2
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
3
CDel node.pngCDel split1.pngCDel branch.png
Alt
Nonuniform bisnub order-6 cubic
CDel node h.pngCDel split1.pngCDel branch hh.pngCDel split2.pngCDel node h.pngCDel node h0.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node h0.png
Uniform tiling 333-snub.png
CDel branch hh.pngCDel split2.pngCDel node h.png
Uniform polyhedron-33-s012.png
CDel node h.pngCDel 3.pngCDel node h.pngCDel 3.pngCDel node h.png
Uniform polyhedron-33-s012.png
CDel node h.pngCDel 3.pngCDel node h.pngCDel 3.pngCDel node h.png
Uniform tiling 333-snub.png
CDel node h.pngCDel split1.pngCDel branch hh.png
Tetrahedron.png
irr. {3,3}
Alternated bitruncated order-4 hexagonal tiling honeycomb vertex figure.png

[3[3,3]] family

There are 4 forms, 0 unique, generated by ring permutations of the Coxeter group: CDel branch.pngCDel splitcross.pngCDel branch.png. They are repeated in four families: CDel node c3.pngCDel splitsplit1.pngCDel branch4 c1-2.pngCDel splitsplit2.pngCDel node c3.pngCDel node h0.pngCDel 6.pngCDel node c3.pngCDel split1.pngCDel branch c1-2.png (index 2 subgroup), CDel node c2.pngCDel splitsplit1.pngCDel branch4 c1.pngCDel splitsplit2.pngCDel node c2.pngCDel node h0.pngCDel 6.pngCDel node c1.pngCDel 3.pngCDel node c2.pngCDel 6.pngCDel node h0.png (index 4 subgroup), CDel node c2.pngCDel splitsplit1.pngCDel branch4 c1.pngCDel splitsplit2.pngCDel node c1.pngCDel node c2.pngCDel 3.pngCDel node c1.pngCDel 6.pngCDel node g.pngCDel 3sg.pngCDel node g.png (index 6 subgroup), and CDel branch c1.pngCDel splitcross.pngCDel branch c1.pngCDel node c1.pngCDel 6.pngCDel node g.pngCDel 3sg.pngCDel node g.pngCDel 3g.pngCDel node g.png (index 24 subgroup).

# Name
Coxeter diagram
0 1 2 3 vertex figure Picture
[1] hexagonal
CDel branch 11.pngCDel splitcross.pngCDel branch 11.pngCDel node 1.pngCDel 6.pngCDel node g.pngCDel 3sg.pngCDel node g.pngCDel 3g.pngCDel node g.png
Uniform tiling 333-t012.png
CDel node 1.pngCDel split1.pngCDel branch 11.png
Uniform tiling 333-t012.png
CDel node 1.pngCDel split1.pngCDel branch 11.png
Uniform tiling 333-t012.png
CDel node 1.pngCDel split1.pngCDel branch 11.png
Uniform tiling 333-t012.png
CDel node 1.pngCDel split1.pngCDel branch 11.png
Order-3 hexagonal tiling honeycomb verf.png CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
{3,3}
H3 633 FC boundary.png
[47] rectified order-6 hexagonal
CDel node.pngCDel splitsplit1.pngCDel branch4 11.pngCDel splitsplit2.pngCDel node.pngCDel node h0.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node h0.png
Uniform tiling 333-t0.png
CDel node 1.pngCDel split1.pngCDel branch.png
Uniform tiling 333-t12.png
CDel node.pngCDel split1.pngCDel branch 11.png
Uniform tiling 333-t0.png
CDel node 1.pngCDel split1.pngCDel branch.png
Uniform tiling 333-t12.png
CDel node.pngCDel split1.pngCDel branch 11.png
Rectified order-6 hexagonal tiling honeycomb verf.png CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 6.pngCDel node.png
t{2,3}
H3 636 boundary 0100.png
[54] triangular tiling honeycomb
( CDel branch.pngCDel splitcross.pngCDel branch 10l.pngCDel node h0.pngCDel 6.pngCDel node.pngCDel split1.pngCDel branch 10lu.png ) = CDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png
Uniform tiling 333-t0.png
CDel node 1.pngCDel split1.pngCDel branch.png
- Uniform tiling 333-t1.png
CDel node.pngCDel split1.pngCDel branch 10lu.png
Uniform tiling 333-t2.png
CDel node.pngCDel split1.pngCDel branch 01ld.png
Uniform tiling 333-t012.png CDel node 1.pngCDel split1.pngCDel branch 11.png
t{3[3]}
H3 363 FC boundary.png
[55] rectified triangular
CDel node.pngCDel splitsplit1.pngCDel branch4 11.pngCDel splitsplit2.pngCDel node 1.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node g.pngCDel 3sg.pngCDel node g.png
Uniform tiling 333-t0.png
CDel node 1.pngCDel split1.pngCDel branch.png
Uniform tiling 333-t12.png
CDel node.pngCDel split1.pngCDel branch 11.png
Uniform tiling 333-t12.png
CDel node.pngCDel split1.pngCDel branch 11.png
Uniform tiling 333-t012.png
CDel node 1.pngCDel split1.pngCDel branch 11.png
Rectified triangular tiling honeycomb verf.png CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 3.pngCDel node.png
t{2,3}
H3 363 boundary 0100.png
# Name
Coxeter diagram
0 1 2 3 Alt vertex figure Picture
[137] alternated hexagonal
( CDel branch hh.pngCDel splitcross.pngCDel branch hh.pngCDel node h1.pngCDel 6.pngCDel node g.pngCDel 3sg.pngCDel node g.pngCDel 3g.pngCDel node g.png ) = CDel branch 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.png
Uniform tiling 333-snub.png
CDel node h.pngCDel split1.pngCDel branch hh.png
s{3[3]}
Uniform tiling 333-snub.png
CDel node h.pngCDel split1.pngCDel branch hh.png
s{3[3]}
Uniform tiling 333-snub.png
CDel node h.pngCDel split1.pngCDel branch hh.png
s{3[3]}
Uniform tiling 333-snub.png
CDel node h.pngCDel split1.pngCDel branch hh.png
s{3[3]}
Uniform polyhedron-33-t0.png
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
{3,3}
Uniform polyhedron-33-t01.png CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
(4.6.6)

Summary enumerations by family

Linear graphs

Paracompact hyperbolic enumeration
Group Extended
symmetry
Honeycombs Chiral
extended
symmetry
Alternation honeycombs

[4,4,3]
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
[4,4,3]
CDel node c1.pngCDel 4.pngCDel node c2.pngCDel 4.pngCDel node c3.pngCDel 3.pngCDel node c4.png
15 CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
[1+,4,1+,4,3+] (6) CDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png (↔ CDel nodes 10ru.pngCDel split2-44.pngCDel node.pngCDel 3.pngCDel node.png)
CDel node.pngCDel 4.pngCDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png (↔ CDel node 1.pngCDel ultra.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel ultra.pngCDel node.png)
CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png
CDel node h.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel node.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png
[4,4,3]+ (1) CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.png

[4,4,4]
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
[4,4,4]
CDel node c1.pngCDel 4.pngCDel node c2.pngCDel 4.pngCDel node c3.pngCDel 4.pngCDel node c4.png
3 CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png [1+,4,1+,4,1+,4,1+] (3) CDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png (↔ CDel nodes 10ru.pngCDel split2-44.pngCDel node.pngCDel 4.pngCDel node.png = CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png)
CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h.png
[4,4,4]
CDel node c1.pngCDel 4.pngCDel node c2.pngCDel 4.pngCDel node c1.pngCDel 4.pngCDel node h0.pngCDel node c2.pngCDel 4.pngCDel node c1.pngCDel 4.pngCDel node g.pngCDel 3sg.pngCDel node g.png
(3) CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png [1+,4,1+,4,1+,4,1+] (3) CDel node.pngCDel 4.pngCDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png (↔ CDel node 1.pngCDel ultra.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel ultra.pngCDel node.png)
CDel node h.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node.pngCDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node.png
[2+[4,4,4]]
CDel node c1.pngCDel 4.pngCDel node c2.pngCDel 4.pngCDel node c2.pngCDel 4.pngCDel node c1.png
3 CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.png [2+[(4,4+,4,2+)]] (2) CDel node h.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h.png CDel node.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node.png
[2+[4,4,4]]+ (1) CDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.pngCDel 4.pngCDel node h.png

[6,3,3]
CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
[6,3,3]
CDel node c1.pngCDel 6.pngCDel node c2.pngCDel 3.pngCDel node c3.pngCDel 3.pngCDel node c4.png
15 CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
[1+,6,(3,3)+] (2) CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png (↔ CDel branch 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.png)
CDel node.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 3.pngCDel node h.png
[6,3,3]+ (1) CDel node h.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 3.pngCDel node h.png

[6,3,4]
CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
[6,3,4]
CDel node c1.pngCDel 6.pngCDel node c2.pngCDel 3.pngCDel node c3.pngCDel 4.pngCDel node c4.png
15 CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png
[1+,6,3+,4,1+] (6) CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png (↔ CDel branch 10ru.pngCDel split2.pngCDel node.pngCDel 4.pngCDel node.png)
CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h1.png (↔ CDel node.pngCDel 6.pngCDel node.pngCDel split1.pngCDel nodes 10lu.png)
CDel node.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node.pngCDel node h.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node.png
CDel node h.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h.pngCDel node.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node h.png
[6,3,4]+ (1) CDel node h.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node h.png

[6,3,5]
CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
[6,3,5]
CDel node c1.pngCDel 6.pngCDel node c2.pngCDel 3.pngCDel node c3.pngCDel 5.pngCDel node c4.png
15 CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node.png CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node 1.png CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node.png CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node 1.png CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node 1.png CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node.png CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node 1.png
CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node.png CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node 1.png CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node 1.png CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node 1.png CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node 1.png
[1+,6,(3,5)+] (2) CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png (↔ CDel branch 10ru.pngCDel split2.pngCDel node.pngCDel 5.pngCDel node.png)
CDel node.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 5.pngCDel node h.png
[6,3,5]+ (1) CDel node h.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 5.pngCDel node h.png

[3,6,3]
CDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png
[3,6,3]
CDel node c1.pngCDel 3.pngCDel node c2.pngCDel 6.pngCDel node c3.pngCDel 3.pngCDel node c4.png
5 CDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png CDel node.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png CDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.png
[3,6,3]
CDel node c1.pngCDel 3.pngCDel node c1.pngCDel 6.pngCDel node g.pngCDel 3sg.pngCDel node g.pngCDel node c1.pngCDel 6.pngCDel node g.pngCDel 3sg.pngCDel node g.pngCDel 3g.pngCDel node g.png
(1) CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png [2+[3+,6,3+]] (1) CDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png
[2+[3,6,3]]
CDel node c1.pngCDel 3.pngCDel node c2.pngCDel 6.pngCDel node c2.pngCDel 3.pngCDel node c1.png
3 CDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.png [2+[3,6,3]]+ (1) CDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.png

[6,3,6]
CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
[6,3,6]
CDel node c1.pngCDel 6.pngCDel node c2.pngCDel 3.pngCDel node c3.pngCDel 6.pngCDel node c4.png
6 CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node.png CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node.png CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node 1.png
[1+,6,3+,6,1+] (2) CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png (↔ CDel branch 10ru.pngCDel split2.pngCDel node.pngCDel 6.pngCDel node.png)
CDel node h.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node.png
[2+[6,3,6]]
CDel node h0.pngCDel 6.pngCDel node c1.pngCDel 3.pngCDel node c1.pngCDel 6.pngCDel node h0.pngCDel node c1.pngCDel 6.pngCDel node g.pngCDel 3sg.pngCDel node g.pngCDel 3g.pngCDel node g.png
(1) CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node.png [2+[(6,3+,6,2+)]] (2) CDel node.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node.png
[2+[6,3,6]]
CDel node c1.pngCDel 6.pngCDel node c2.pngCDel 3.pngCDel node c2.pngCDel 6.pngCDel node c1.png
2 CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node 1.png CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node 1.png CDel node h.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node h.png
[2+[6,3,6]]+ (1) CDel node h.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node h.png

Tridental graphs

Paracompact hyperbolic enumeration
Group Extended
symmetry
Honeycombs Chiral
extended
symmetry
Alternation honeycombs

[6,31,1]
CDel node.pngCDel 6.pngCDel node.pngCDel split1.pngCDel nodes.png
[6,31,1] 4 CDel node.pngCDel 6.pngCDel node.pngCDel split1.pngCDel nodes 10lu.png CDel node 1.pngCDel 6.pngCDel node.pngCDel split1.pngCDel nodes 10lu.png CDel node.pngCDel 6.pngCDel node 1.pngCDel split1.pngCDel nodes 10lu.png CDel node 1.pngCDel 6.pngCDel node 1.pngCDel split1.pngCDel nodes 10lu.png
[1[6,31,1]]=[6,3,4]
CDel node c1.pngCDel 6.pngCDel node c2.pngCDel split1.pngCDel nodeab c3.pngCDel node c1.pngCDel 6.pngCDel node c2.pngCDel 3.pngCDel node c3.pngCDel 4.pngCDel node h0.png
(7) CDel node 1.pngCDel 6.pngCDel node.pngCDel split1.pngCDel nodes.png CDel node.pngCDel 6.pngCDel node 1.pngCDel split1.pngCDel nodes.png CDel node 1.pngCDel 6.pngCDel node 1.pngCDel split1.pngCDel nodes.png CDel node.pngCDel 6.pngCDel node.pngCDel split1.pngCDel nodes 11.png CDel node 1.pngCDel 6.pngCDel node.pngCDel split1.pngCDel nodes 11.png CDel node.pngCDel 6.pngCDel node 1.pngCDel split1.pngCDel nodes 11.png CDel node 1.pngCDel 6.pngCDel node 1.pngCDel split1.pngCDel nodes 11.png [1[1+,6,31,1]]+ (2) CDel node h1.pngCDel 6.pngCDel node.pngCDel split1.pngCDel nodes.png (↔ CDel node.pngCDel split1.pngCDel branch 10luru.pngCDel split2.pngCDel node.png)
CDel node.pngCDel 6.pngCDel node h.pngCDel split1.pngCDel nodes hh.png
[1[6,31,1]]+=[6,3,4]+ (1) CDel node h.pngCDel 6.pngCDel node h.pngCDel split1.pngCDel nodes hh.png

[3,41,1]
CDel node.pngCDel 3.pngCDel node.pngCDel split1-44.pngCDel nodes.png
[3,41,1] 4 CDel node.pngCDel 3.pngCDel node.pngCDel split1-44.pngCDel nodes 10lu.png CDel node 1.pngCDel 3.pngCDel node.pngCDel split1-44.pngCDel nodes 10lu.png CDel node.pngCDel 3.pngCDel node 1.pngCDel split1-44.pngCDel nodes 10lu.png CDel node 1.pngCDel 3.pngCDel node 1.pngCDel split1-44.pngCDel nodes 10lu.png [3+,41,1]+ (2) CDel node.pngCDel 3.pngCDel node.pngCDel split1-44.pngCDel nodes h0l.pngCDel node.pngCDel split1-44.pngCDel nodes 10luru.pngCDel split2.pngCDel node.png
CDel node h.pngCDel 3.pngCDel node h.pngCDel split1-44.pngCDel nodes h0l.png
[1[3,41,1]]=[3,4,4]
CDel node c1.pngCDel 3.pngCDel node c2.pngCDel split1-44.pngCDel nodeab c3.pngCDel node c1.pngCDel 3.pngCDel node c2.pngCDel 4.pngCDel node c3.pngCDel 4.pngCDel node h0.png
(7) CDel node 1.pngCDel 3.pngCDel node.pngCDel split1-44.pngCDel nodes.png CDel node.pngCDel 3.pngCDel node 1.pngCDel split1-44.pngCDel nodes.png CDel node 1.pngCDel 3.pngCDel node 1.pngCDel split1-44.pngCDel nodes.png CDel node.pngCDel 3.pngCDel node.pngCDel split1-44.pngCDel nodes 11.png CDel node 1.pngCDel 3.pngCDel node.pngCDel split1-44.pngCDel nodes 11.png CDel node.pngCDel 3.pngCDel node 1.pngCDel split1-44.pngCDel nodes 11.png CDel node 1.pngCDel 3.pngCDel node 1.pngCDel split1-44.pngCDel nodes 11.png [1[3+,41,1]]+ (2) CDel node h.pngCDel 3.pngCDel node h.pngCDel split1-44.pngCDel nodes.png CDel node.pngCDel 3.pngCDel node.pngCDel split1-44.pngCDel nodes hh.png
[1[3,41,1]]+ (1) CDel node h.pngCDel 3.pngCDel node h.pngCDel split1-44.pngCDel nodes hh.png

[41,1,1]
CDel node.pngCDel 4.pngCDel node.pngCDel split1-44.pngCDel nodes.png
[41,1,1] 0 (none)
[1[41,1,1]]=[4,4,4]
CDel node c1.pngCDel 4.pngCDel node c2.pngCDel split1-44.pngCDel nodeab c3.pngCDel node c1.pngCDel 4.pngCDel node c2.pngCDel 4.pngCDel node c3.pngCDel 4.pngCDel node h0.png
(4) CDel node 1.pngCDel 4.pngCDel node.pngCDel split1-44.pngCDel nodes.png CDel node.pngCDel 4.pngCDel node.pngCDel split1-44.pngCDel nodes 11.png CDel node 1.pngCDel 4.pngCDel node 1.pngCDel split1-44.pngCDel nodes.png CDel node.pngCDel 4.pngCDel node 1.pngCDel split1-44.pngCDel nodes 11.png [1[1+,4,1+,41,1]]+=[(4,1+,4,1+,4,2+)] (4) CDel node h1.pngCDel 4.pngCDel node.pngCDel split1-44.pngCDel nodes.png (↔ CDel node 1.pngCDel split1-44.pngCDel nodes.pngCDel split2-44.pngCDel node.png)
CDel node.pngCDel 4.pngCDel node.pngCDel split1-44.pngCDel nodes hh.pngCDel node h.pngCDel 4.pngCDel node h.pngCDel split1-44.pngCDel nodes.pngCDel node.pngCDel 4.pngCDel node h.pngCDel split1-44.pngCDel nodes hh.png
[3[41,1,1]]=[4,4,3]
CDel node c1.pngCDel 4.pngCDel node c2.pngCDel split1-44.pngCDel nodeab c1.pngCDel node c2.pngCDel 4.pngCDel node c1.pngCDel 4.pngCDel node g.pngCDel 3sg.pngCDel node g.png
(3) CDel node.pngCDel 4.pngCDel node 1.pngCDel split1-44.pngCDel nodes.png CDel node 1.pngCDel 4.pngCDel node.pngCDel split1-44.pngCDel nodes 11.png CDel node 1.pngCDel 4.pngCDel node 1.pngCDel split1-44.pngCDel nodes 11.png [3[1+,41,1,1]]+=[1+,4,1+,4,3+] (2) CDel node.pngCDel 4.pngCDel node h1.pngCDel split1-44.pngCDel nodes.png (↔ CDel node 1.pngCDel split1-uu.pngCDel nodes.pngCDel 2a2b-cross.pngCDel nodes 11.pngCDel split2-uu.pngCDel node.png)
CDel node h.pngCDel 4.pngCDel node.pngCDel split1-44.pngCDel nodes hh.png
[3[41,1,1]]+=[4,4,3]+ (1) CDel node h.pngCDel 4.pngCDel node h.pngCDel split1-44.pngCDel nodes hh.png

Cyclic graphs

Paracompact hyperbolic enumeration
Group Extended
symmetry
Honeycombs Chiral
extended
symmetry
Alternation honeycombs

[(4,4,4,3)]
CDel label4.pngCDel branch.pngCDel 4-4.pngCDel branch.png
[(4,4,4,3)] 6 CDel label4.pngCDel branch 10r.pngCDel 4-4.pngCDel branch.png CDel label4.pngCDel branch.pngCDel 4-4.pngCDel branch 10l.png CDel label4.pngCDel branch 01r.pngCDel 4-4.pngCDel branch 10l.png CDel label4.pngCDel branch 10r.pngCDel 4-4.pngCDel branch 10l.png CDel label4.pngCDel branch 11.pngCDel 4-4.pngCDel branch 10l.png CDel label4.pngCDel branch 10r.pngCDel 4-4.pngCDel branch 11.png [(4,1+,4,1+,4,3+)] (2) CDel label4.pngCDel branch h0r.pngCDel 4-4.pngCDel branch.pngCDel branchu 10.pngCDel split2-43.pngCDel node.pngCDel split1-43.pngCDel branchu 01.png
CDel label4.pngCDel branch h0r.pngCDel 4-4.pngCDel branch hh.png
[2+[(4,4,4,3)]]
CDel label4.pngCDel branch c1.pngCDel 4-4.pngCDel branch c2.png
3 CDel label4.pngCDel branch 11.pngCDel 4-4.pngCDel branch.png CDel label4.pngCDel branch.pngCDel 4-4.pngCDel branch 11.png CDel label4.pngCDel branch 11.pngCDel 4-4.pngCDel branch 11.png [2+[(4,4+,4,3+)]] (2) CDel label4.pngCDel branch hh.pngCDel 4-4.pngCDel branch.png CDel label4.pngCDel branch.pngCDel 4-4.pngCDel branch hh.png
[2+[(4,4,4,3)]]+ (1) CDel label4.pngCDel branch hh.pngCDel 4-4.pngCDel branch hh.png

[4[4]]
CDel label4.pngCDel branch.pngCDel 4-4.pngCDel branch.pngCDel label4.png
[4[4]] (none)
[2+[4[4]]]
CDel label4.pngCDel branch c1.pngCDel 4-4.pngCDel branch c2.pngCDel label4.png
1 CDel label4.pngCDel branch 11.pngCDel 4-4.pngCDel branch.pngCDel label4.png [2+[(4+,4)[2]]] (1) CDel label4.pngCDel branch hh.pngCDel 4-4.pngCDel branch.pngCDel label4.png
[1[4[4]]]=[4,41,1]
CDel node c3.pngCDel split1-44.pngCDel nodeab c1-2.pngCDel split2-44.pngCDel node c3.pngCDel node h0.pngCDel 4.pngCDel node c3.pngCDel split1-44.pngCDel nodeab c1-2.png
(2) CDel node 1.pngCDel split1-44.pngCDel nodes.pngCDel split2-44.pngCDel node.png CDel node 1.pngCDel split1-44.pngCDel nodes 11.pngCDel split2-44.pngCDel node.png [(1+,4)[4]] (2) CDel node h1.pngCDel split1-44.pngCDel nodes.pngCDel split2-44.pngCDel node.pngCDel branchu 10.pngCDel split2-44.pngCDel node.pngCDel split1-44.pngCDel branchu 01.png
CDel node h.pngCDel split1-44.pngCDel nodes hh.pngCDel split2-44.pngCDel node.png
[2[4[4]]]=[4,4,4]
CDel node c1.pngCDel split1-44.pngCDel nodeab c2.pngCDel split2-44.pngCDel node c1.pngCDel node h0.pngCDel 4.pngCDel node c1.pngCDel 4.pngCDel node c2.pngCDel 4.pngCDel node h0.png
(1) CDel node 1.pngCDel split1-44.pngCDel nodes.pngCDel split2-44.pngCDel node 1.png [2+[(1+,4,4)[2]]] (1) CDel node h.pngCDel split1-44.pngCDel nodes.pngCDel split2-44.pngCDel node h.png
[(2+,4)[4[4]]]=[2+[4,4,4]]
CDel label4.pngCDel branch c1.pngCDel 4-4.pngCDel branch c1.pngCDel label4.png = CDel label4.pngCDel branch c1.pngCDel 4-4.pngCDel nodes.png
(1) CDel label4.pngCDel branch 11.pngCDel 4-4.pngCDel branch 11.pngCDel label4.png [(2+,4)[4[4]]]+
= [2+[4,4,4]]+
(1) CDel label4.pngCDel branch hh.pngCDel 4-4.pngCDel branch hh.pngCDel label4.png

[(6,3,3,3)]
CDel label6.pngCDel branch.pngCDel 3ab.pngCDel branch.png
[(6,3,3,3)] 6 CDel label6.pngCDel branch 10r.pngCDel 3ab.pngCDel branch.png CDel label6.pngCDel branch.pngCDel 3ab.pngCDel branch 10l.png CDel label6.pngCDel branch 01r.pngCDel 3ab.pngCDel branch 10l.png CDel label6.pngCDel branch 10r.pngCDel 3ab.pngCDel branch 10l.png CDel label6.pngCDel branch 11.pngCDel 3ab.pngCDel branch 10l.png CDel label6.pngCDel branch 10r.pngCDel 3ab.pngCDel branch 11.png
[2+[(6,3,3,3)]]
CDel label6.pngCDel branch c1.pngCDel 3ab.pngCDel branch c2.png
3 CDel label6.pngCDel branch 11.pngCDel 3ab.pngCDel branch.png CDel label6.pngCDel branch.pngCDel 3ab.pngCDel branch 11.png CDel label6.pngCDel branch 11.pngCDel 3ab.pngCDel branch 11.png [2+[(6,3,3,3)]]+ (1) CDel label6.pngCDel branch hh.pngCDel 3ab.pngCDel branch hh.png

[(3,4,3,6)]
CDel label6.pngCDel branch.pngCDel 3ab.pngCDel branch.pngCDel label4.png
[(3,4,3,6)] 6 CDel label6.pngCDel branch 10r.pngCDel 3ab.pngCDel branch.pngCDel label4.png CDel label6.pngCDel branch.pngCDel 3ab.pngCDel branch 10l.pngCDel label4.png CDel label6.pngCDel branch 01r.pngCDel 3ab.pngCDel branch 10l.pngCDel label4.png CDel label6.pngCDel branch 10r.pngCDel 3ab.pngCDel branch 10l.pngCDel label4.png CDel label6.pngCDel branch 11.pngCDel 3ab.pngCDel branch 10l.pngCDel label4.png CDel label6.pngCDel branch 10r.pngCDel 3ab.pngCDel branch 11.pngCDel label4.png [(3+,4,3+,6)] (1) CDel label6.pngCDel branch h0r.pngCDel 3ab.pngCDel branch h0l.pngCDel label4.png
[2+[(3,4,3,6)]]
CDel label6.pngCDel branch c1.pngCDel 3ab.pngCDel branch c2.pngCDel label4.png
3 CDel label6.pngCDel branch 11.pngCDel 3ab.pngCDel branch.pngCDel label4.png CDel label6.pngCDel branch.pngCDel 3ab.pngCDel branch 11.pngCDel label4.png CDel label6.pngCDel branch 11.pngCDel 3ab.pngCDel branch 11.pngCDel label4.png [2+[(3,4,3,6)]]+ (1) CDel label6.pngCDel branch hh.pngCDel 3ab.pngCDel branch hh.pngCDel label4.png

[(3,5,3,6)]
CDel label6.pngCDel branch.pngCDel 3ab.pngCDel branch.pngCDel label5.png
[(3,5,3,6)] 6 CDel label6.pngCDel branch 10r.pngCDel 3ab.pngCDel branch.pngCDel label5.png CDel label6.pngCDel branch.pngCDel 3ab.pngCDel branch 10l.pngCDel label5.png CDel label6.pngCDel branch 01r.pngCDel 3ab.pngCDel branch 10l.pngCDel label5.png CDel label6.pngCDel branch 10r.pngCDel 3ab.pngCDel branch 10l.pngCDel label5.png CDel label6.pngCDel branch 11.pngCDel 3ab.pngCDel branch 10l.pngCDel label5.png CDel label6.pngCDel branch 10r.pngCDel 3ab.pngCDel branch 11.pngCDel label5.png
[2+[(3,5,3,6)]]
CDel label6.pngCDel branch c1.pngCDel 3ab.pngCDel branch c2.pngCDel label5.png
3 CDel label6.pngCDel branch 11.pngCDel 3ab.pngCDel branch.pngCDel label5.png CDel label6.pngCDel branch.pngCDel 3ab.pngCDel branch 11.pngCDel label5.png CDel label6.pngCDel branch 11.pngCDel 3ab.pngCDel branch 11.pngCDel label5.png [2+[(3,5,3,6)]]+ (1) CDel label6.pngCDel branch hh.pngCDel 3ab.pngCDel branch hh.pngCDel label5.png

[(3,6)[2]]
CDel label6.pngCDel branch.pngCDel 3ab.pngCDel branch.pngCDel label6.png
[(3,6)[2]] 2 CDel label6.pngCDel branch 10r.pngCDel 3ab.pngCDel branch.pngCDel label6.png CDel label6.pngCDel branch 11.pngCDel 3ab.pngCDel branch 10l.pngCDel label6.png
[2+[(3,6)[2]]]
CDel label6.pngCDel branch c1-2.pngCDel 3ab.pngCDel branch c2-1.pngCDel label6.png
1 CDel label6.pngCDel branch 01r.pngCDel 3ab.pngCDel branch 10l.pngCDel label6.png
[2+[(3,6)[2]]]
CDel label6.pngCDel branch c1.pngCDel 3ab.pngCDel branch c2.pngCDel label6.png
1 CDel label6.pngCDel branch 11.pngCDel 3ab.pngCDel branch.pngCDel label6.png
[2+[(3,6)[2]]]
CDel label6.pngCDel branch c1-0.pngCDel 3ab.pngCDel branch c1-0.pngCDel label6.png = CDel node c1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
(1) CDel label6.pngCDel branch 10r.pngCDel 3ab.pngCDel branch 10l.pngCDel label6.png [2+[(3+,6)[2]]] (1) CDel label6.pngCDel branch h0r.pngCDel 3ab.pngCDel branch h0l.pngCDel label6.png
[(2,2)+[(3,6)[2]]]
CDel label6.pngCDel branch c1.pngCDel 3ab.pngCDel branch c1.pngCDel label6.png
1 CDel label6.pngCDel branch 11.pngCDel 3ab.pngCDel branch 11.pngCDel label6.png [(2,2)+[(3,6)[2]]]+ (1) CDel label6.pngCDel branch hh.pngCDel 3ab.pngCDel branch hh.pngCDel label6.png
Paracompact hyperbolic enumeration
Group Extended
symmetry
Honeycombs Chiral
extended
symmetry
Alternation honeycombs

[(3,3,4,4)]
CDel node.pngCDel split1-44.pngCDel nodes.pngCDel split2.pngCDel node.png
[(3,3,4,4)] 4 CDel node.pngCDel split1-44.pngCDel nodes 10luru.pngCDel split2.pngCDel node.png CDel node 1.pngCDel split1-44.pngCDel nodes 10luru.pngCDel split2.pngCDel node.png CDel node.pngCDel split1-44.pngCDel nodes 10luru.pngCDel split2.pngCDel node 1.png CDel node 1.pngCDel split1-44.pngCDel nodes 10luru.pngCDel split2.pngCDel node 1.png
[1[(4,4,3,3)]]=[3,41,1]
CDel node c1.pngCDel split1-44.pngCDel nodeab c3.pngCDel split2.pngCDel node c2.pngCDel node h0.pngCDel 4.pngCDel node c3.pngCDel split1-43.pngCDel nodeab c1-2.png
(7) CDel node 1.pngCDel split1-44.pngCDel nodes.pngCDel split2.pngCDel node.png CDel node.pngCDel split1-44.pngCDel nodes.pngCDel split2.pngCDel node 1.png CDel node 1.pngCDel split1-44.pngCDel nodes.pngCDel split2.pngCDel node 1.png CDel node.pngCDel split1-44.pngCDel nodes 11.pngCDel split2.pngCDel node.png CDel node 1.pngCDel split1-44.pngCDel nodes 11.pngCDel split2.pngCDel node.png CDel node.pngCDel split1-44.pngCDel nodes 11.pngCDel split2.pngCDel node 1.png CDel node 1.pngCDel split1-44.pngCDel nodes 11.pngCDel split2.pngCDel node 1.png [1[(3,3,4,1+,4)]]+
= [3+,41,1]+
(2) CDel node h1.pngCDel split1-44.pngCDel nodes.pngCDel split2.pngCDel node.png (= CDel branchu 10.pngCDel split2.pngCDel node.pngCDel split1.pngCDel branchu 01.png)
CDel node.pngCDel split1-44.pngCDel nodes hh.pngCDel split2.pngCDel node h.png
[1[(3,3,4,4)]]+
= [3,41,1]+
(1) CDel node h.pngCDel split1-44.pngCDel nodes hh.pngCDel split2.pngCDel node h.png

[3[ ]x[ ]]
CDel node.pngCDel split1.pngCDel branch.pngCDel split2.pngCDel node.png
[3[ ]x[ ]] 1 CDel node 1.pngCDel split1.pngCDel branch 10luru.pngCDel split2.pngCDel node.png
[1[3[ ]x[ ]]]=[6,31,1]
CDel node c1.pngCDel split1-44.pngCDel branch c3.pngCDel split2.pngCDel node c2.pngCDel node h0.pngCDel 6.pngCDel node c3.pngCDel split1.pngCDel nodeab c1-2.png
(2) CDel node 1.pngCDel split1.pngCDel branch.pngCDel split2.pngCDel node.png CDel node 1.pngCDel split1.pngCDel branch 11.pngCDel split2.pngCDel node.png
[1[3[ ]x[ ]]]=[4,3[3]]
CDel node c3.pngCDel split1-44.pngCDel branch c1-2.pngCDel split2.pngCDel node c3.pngCDel node h0.pngCDel 4.pngCDel node c3.pngCDel split1.pngCDel branch c1-2.png
(2) CDel node.pngCDel split1.pngCDel branch 10luru.pngCDel split2.pngCDel node.png CDel node 1.pngCDel split1.pngCDel branch 10l.pngCDel split2.pngCDel node 1.png
[2[3[ ]x[ ]]]=[6,3,4]
CDel node c2.pngCDel split1.pngCDel branch c1.pngCDel split2.pngCDel node c2.pngCDel node h0.pngCDel 6.pngCDel node c1.pngCDel 3.pngCDel node c2.pngCDel 4.pngCDel node h0.png
(3) CDel node.pngCDel split1.pngCDel branch 11.pngCDel split2.pngCDel node.png CDel node 1.pngCDel split1.pngCDel branch.pngCDel split2.pngCDel node 1.png CDel node 1.pngCDel split1.pngCDel branch 11.pngCDel split2.pngCDel node 1.png [2[3[ ]x[ ]]]+
=[6,3,4]+
(1) CDel node h.pngCDel split1.pngCDel branch hh.pngCDel split2.pngCDel node h.png

[3[3,3]]
CDel branch.pngCDel splitcross.pngCDel branch.png
CDel node.pngCDel splitsplit1.pngCDel branch4.pngCDel splitsplit2.pngCDel node.png
[3[3,3]] 0 (none)
[1[3[3,3]]]=[6,3[3]]
CDel node c3.pngCDel splitsplit1.pngCDel branch4 c1-2.pngCDel splitsplit2.pngCDel node c3.pngCDel node h0.pngCDel 6.pngCDel node c3.pngCDel split1.pngCDel branch c1-2.png
0 (none)
[3[3[3,3]]]=[3,6,3]
CDel node c2.pngCDel splitsplit1.pngCDel branch4 c1.pngCDel splitsplit2.pngCDel node c1.pngCDel node c2.pngCDel 3.pngCDel node c1.pngCDel 6.pngCDel node g.pngCDel 3sg.pngCDel node g.png
(2) CDel node 1.pngCDel splitsplit1.pngCDel branch4.pngCDel splitsplit2.pngCDel node.png CDel node 1.pngCDel splitsplit1.pngCDel branch4 11.pngCDel splitsplit2.pngCDel node.png
[2[3[3,3]]]=[6,3,6]
CDel node c2.pngCDel splitsplit1.pngCDel branch4 c1.pngCDel splitsplit2.pngCDel node c2.pngCDel node h0.pngCDel 6.pngCDel node c1.pngCDel 3.pngCDel node c2.pngCDel 6.pngCDel node h0.png
(1) CDel node 1.pngCDel splitsplit1.pngCDel branch4.pngCDel splitsplit2.pngCDel node 1.png
[(3,3)[3[3,3]]]=[6,3,3]
CDel branch c1.pngCDel splitcross.pngCDel branch c1.png = CDel node c1.pngCDel 6.pngCDel node g.pngCDel 3sg.pngCDel node g.pngCDel 3g.pngCDel node g.png
(1) CDel branch 11.pngCDel splitcross.pngCDel branch 11.png [(3,3)[3[3,3]]]+
= [6,3,3]+
(1) CDel branch hh.pngCDel splitcross.pngCDel branch hh.png

Loop-n-tail graphs

Symmetry in these graphs can be doubled by adding a mirror: [1[n,3[3]]] = [n,3,6]. Therefore ring-symmetry graphs are repeated in the linear graph families.

Paracompact hyperbolic enumeration
Group Extended
symmetry
Honeycombs Chiral
extended
symmetry
Alternation honeycombs

[3,3[3]]
CDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel branch.png
[3,3[3]] 4 CDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel branch 10lu.png CDel node 1.pngCDel 3.pngCDel node.pngCDel split1.pngCDel branch 10lu.png CDel node.pngCDel 3.pngCDel node 1.pngCDel split1.pngCDel branch 10lu.png CDel node 1.pngCDel 3.pngCDel node 1.pngCDel split1.pngCDel branch 10lu.png
[1[3,3[3]]]=[3,3,6]
CDel node c1.pngCDel 3.pngCDel node c2.pngCDel split1.pngCDel branch c3.pngCDel node c1.pngCDel 3.pngCDel node c2.pngCDel 3.pngCDel node c3.pngCDel 6.pngCDel node h0.png
(7) CDel node 1.pngCDel 3.pngCDel node.pngCDel split1.pngCDel branch.png CDel node.pngCDel 3.pngCDel node 1.pngCDel split1.pngCDel branch.png CDel node 1.pngCDel 3.pngCDel node 1.pngCDel split1.pngCDel branch.png CDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel branch 11.png CDel node 1.pngCDel 3.pngCDel node.pngCDel split1.pngCDel branch 11.png CDel node.pngCDel 3.pngCDel node 1.pngCDel split1.pngCDel branch 11.png CDel node 1.pngCDel 3.pngCDel node 1.pngCDel split1.pngCDel branch 11.png [1[3,3[3]]]+
= [3,3,6]+
(1) CDel node h.pngCDel 3.pngCDel node h.pngCDel split1.pngCDel branch hh.png

[4,3[3]]
CDel node.pngCDel 4.pngCDel node.pngCDel split1.pngCDel branch.png
[4,3[3]] 4 CDel node.pngCDel 4.pngCDel node.pngCDel split1.pngCDel branch 10lu.png CDel node 1.pngCDel 4.pngCDel node.pngCDel split1.pngCDel branch 10lu.png CDel node.pngCDel 4.pngCDel node 1.pngCDel split1.pngCDel branch 10lu.png CDel node 1.pngCDel 4.pngCDel node 1.pngCDel split1.pngCDel branch 10lu.png
[1[4,3[3]]]=[4,3,6]
CDel node c1.pngCDel 4.pngCDel node c2.pngCDel split1.pngCDel branch c3.pngCDel node c1.pngCDel 4.pngCDel node c2.pngCDel 3.pngCDel node c3.pngCDel 6.pngCDel node h0.png
(7) CDel node 1.pngCDel 4.pngCDel node.pngCDel split1.pngCDel branch.png CDel node.pngCDel 4.pngCDel node 1.pngCDel split1.pngCDel branch.png CDel node 1.pngCDel 4.pngCDel node 1.pngCDel split1.pngCDel branch.png CDel node.pngCDel 4.pngCDel node.pngCDel split1.pngCDel branch 11.png CDel node 1.pngCDel 4.pngCDel node.pngCDel split1.pngCDel branch 11.png CDel node.pngCDel 4.pngCDel node 1.pngCDel split1.pngCDel branch 11.png CDel node 1.pngCDel 4.pngCDel node 1.pngCDel split1.pngCDel branch 11.png [1+,4,(3[3])+] (2) CDel node h1.pngCDel 4.pngCDel node.pngCDel split1.pngCDel branch.pngCDel node 1.pngCDel split1.pngCDel branch.pngCDel split2.pngCDel node.png
CDel node.pngCDel 4.pngCDel node h.pngCDel split1.pngCDel branch hh.png
[4,3[3]]+ (1) CDel node h.pngCDel 4.pngCDel node h.pngCDel split1.pngCDel branch hh.png

[5,3[3]]
CDel node.pngCDel 5.pngCDel node.pngCDel split1.pngCDel branch.png
[5,3[3]] 4 CDel node.pngCDel 5.pngCDel node.pngCDel split1.pngCDel branch 10lu.png CDel node 1.pngCDel 5.pngCDel node.pngCDel split1.pngCDel branch 10lu.png CDel node.pngCDel 5.pngCDel node 1.pngCDel split1.pngCDel branch 10lu.png CDel node 1.pngCDel 5.pngCDel node 1.pngCDel split1.pngCDel branch 10lu.png
[1[5,3[3]]]=[5,3,6]
CDel node c1.pngCDel 5.pngCDel node c2.pngCDel split1.pngCDel branch c3.pngCDel node c1.pngCDel 5.pngCDel node c2.pngCDel 3.pngCDel node c3.pngCDel 6.pngCDel node h0.png
(7) CDel node 1.pngCDel 5.pngCDel node.pngCDel split1.pngCDel branch.png CDel node.pngCDel 5.pngCDel node 1.pngCDel split1.pngCDel branch.png CDel node 1.pngCDel 5.pngCDel node 1.pngCDel split1.pngCDel branch.png CDel node.pngCDel 5.pngCDel node.pngCDel split1.pngCDel branch 11.png CDel node 1.pngCDel 5.pngCDel node.pngCDel split1.pngCDel branch 11.png CDel node.pngCDel 5.pngCDel node 1.pngCDel split1.pngCDel branch 11.png CDel node 1.pngCDel 5.pngCDel node 1.pngCDel split1.pngCDel branch 11.png [1[5,3[3]]]+
= [5,3,6]+
(1) CDel node h.pngCDel 5.pngCDel node h.pngCDel split1.pngCDel branch hh.png

[6,3[3]]
CDel node.pngCDel 6.pngCDel node.pngCDel split1.pngCDel branch.png
[6,3[3]] 2 CDel node 1.pngCDel 6.pngCDel node.pngCDel split1.pngCDel branch 10lu.png CDel node 1.pngCDel 6.pngCDel node 1.pngCDel split1.pngCDel branch 10lu.png
[6,3[3]] = (2) (CDel node.pngCDel 6.pngCDel node.pngCDel split1.pngCDel branch 10lu.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png) (CDel node.pngCDel 6.pngCDel node 1.pngCDel split1.pngCDel branch 10lu.png = CDel node.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png)
[(3,3)[1+,6,3[3]]]=[6,3,3]
CDel node h0.pngCDel 6.pngCDel node c1.pngCDel split1.pngCDel branch c1.pngCDel node c1.pngCDel 6.pngCDel node g.pngCDel 3sg.pngCDel node g.pngCDel 3g.pngCDel node g.pngCDel branch c1.pngCDel splitcross.pngCDel branch c1.png
(1) CDel node.pngCDel 6.pngCDel node 1.pngCDel split1.pngCDel branch 11.png [(3,3)[1+,6,3[3]]]+ (1) CDel node.pngCDel 6.pngCDel node h.pngCDel split1.pngCDel branch hh.png
[1[6,3[3]]]=[6,3,6]
CDel node c1.pngCDel 6.pngCDel node c2.pngCDel split1.pngCDel branch c3.pngCDel node c1.pngCDel 6.pngCDel node c2.pngCDel 3.pngCDel node c3.pngCDel 6.pngCDel node h0.png
(6) CDel node 1.pngCDel 6.pngCDel node.pngCDel split1.pngCDel branch.png CDel node.pngCDel 6.pngCDel node 1.pngCDel split1.pngCDel branch.png CDel node 1.pngCDel 6.pngCDel node 1.pngCDel split1.pngCDel branch.png CDel node.pngCDel 6.pngCDel node.pngCDel split1.pngCDel branch 11.png CDel node 1.pngCDel 6.pngCDel node.pngCDel split1.pngCDel branch 11.png CDel node 1.pngCDel 6.pngCDel node 1.pngCDel split1.pngCDel branch 11.png [3[1+,6,3[3]]]+
= [3,6,3]+
(1) CDel node h1.pngCDel 6.pngCDel node.pngCDel split1.pngCDel branch.pngCDel node 1.pngCDel splitsplit1.pngCDel branch4.pngCDel splitsplit2.pngCDel node.png (= CDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png )
[1[6,3[3]]]+
= [6,3,6]+
(1) CDel node h.pngCDel 6.pngCDel node h.pngCDel split1.pngCDel branch hh.png

See also

Notes

References

  • James E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge studies in advanced mathematics, 29 (1990)
  • The Beauty of Geometry: Twelve Essays (1999), Dover Publications, LCCN99-35678, ISBN0-486-40919-8 (Chapter 10, Regular Honeycombs in Hyperbolic Space)
  • Coxeter, Regular Polytopes, 3rd. ed., Dover Publications, 1973. ISBN 0-486-61480-8. (Tables I and II: Regular polytopes and honeycombs, pp. 294–296)
  • Jeffrey R. Weeks The Shape of Space, 2nd edition ISBN 0-8247-0709-5 (Chapter 16-17: Geometries on Three-manifolds I,II)
  • Coxeter Decompositions of Hyperbolic Tetrahedra, arXiv/PDF, A. Felikson, December 2002
  • C. W. L. Garner, Regular Skew Polyhedra in Hyperbolic Three-Space Can. J. Math. 19, 1179-1186, 1967. PDF [1]
  • Norman Johnson, Geometries and Transformations, (2018) Chapters 11,12,13
  • N. W. Johnson, R. Kellerhals, J. G. Ratcliffe, S. T. Tschantz, The size of a hyperbolic Coxeter simplex, Transformation Groups (1999), Volume 4, Issue 4, pp 329–353 [2] [3]
  • N.W. Johnson, R. Kellerhals, J.G. Ratcliffe,S.T. Tschantz, Commensurability classes of hyperbolic Coxeter groups, (2002) H3: p130. [4]
  • Klitzing, Richard. "Hyperbolic honeycombs H3 paracompact".