우주에서 실험한 미생물 목록
List of microorganisms tested in outer space우주 공간에 노출된 일부 미생물의 생존은 시뮬레이션 시설과 낮은 지구 궤도 노출을 사용하여 연구되었다.박테리아는 1960년 러시아 위성이 대장균, 포도상구균, 그리고 엔테로박터 기체를 [1]궤도로 옮겼을 때 조사된 최초의 유기체 중 일부였다.이후 아래 표와 같이 많은 종류의 미생물이 노출 실험 대상으로 선택되었다.
우주에서 미생물의 적응에 대한 실험은 예측할 수 없는 결과를 낳았다.때때로 미생물이 약해질 수도 있지만, 그들은 또한 질병을 유발하는 [1]능력을 증가시킬 수도 있다.
이러한 미생물은 인체에 의한 것과 극친동물의 두 그룹으로 분류할 수 있다.인간이 매개하는 미생물을 연구하는 것은 인간의 복지와 미래 우주에서의 승무원 임무에 중요한 반면, 극친동물은 우주에서 [2]생존하는 생리적 요구 사항을 연구하는 데 필수적이다.나사는 정상적인 성인들은 인간의 세포보다 10배나 많은 미생물 세포를 [3]가지고 있다고 지적했다.그들은 또한 환경의 거의 모든 곳에 존재하며, 보통은 보이지 않지만 끈적끈적한 생체막을 [3]형성할 수 있다.
극친동물은 지구상에서 가장 극단적인 환경들 중 일부에서 살도록 적응해 왔다.여기에는 과염색 호수, 건조 지역, 심해, 산성 지역, 차고 건조한 극지방 및 영구 [4]동토층이 포함됩니다.극친성의 존재는 미생물이 외계 환경의 혹독한 조건에서도 살아남을 수 있고 이러한 환경에서 생물학적 시스템의 운명을 이해하는 모범 유기체로 사용될 수 있다는 추측을 불러 일으켰다.많은 실험의 초점은 [2]암석 안에 있는 유기체의 [2]생존 가능성을 조사하거나 화성에서 과거 또는 현재 생명체의 가능성을 이해하기 위해 화성에서 그들의 생존 가능성을 조사하는 것이었다.우주선의 오염 제거에 대한 내성과 보편성 때문에, 박테리아 포자는 화성 로봇 임무에서 잠재적인 전방 오염 물질로 여겨진다.이러한 유기체의 우주 조건에 대한 저항력 측정은 적절한 오염 제거 [5]절차를 개발하기 위해 적용될 수 있다.
외계의 미생물에 대한 연구와 테스트는 결국 유도된 팬스퍼미아나 테라포밍에 적용될 수 있다.
테이블

「 」를 참조해 주세요.
레퍼런스
- ^ a b Love, Shayla (2016-10-26). "Bacteria get dangerously weird in space". The Independent. Retrieved 2016-10-27.
- ^ a b c Olsson-Francis, K.; Cockell, C. S. (2010). "Experimental methods for studying microbial survival in extraterrestrial environments" (PDF). Journal of Microbiological Methods. 80 (1): 1–13. doi:10.1016/j.mimet.2009.10.004. PMID 19854226. Archived from the original (PDF) on 2017-08-11. Retrieved 2013-08-06.
- ^ a b c NASA – 우주 비행 박테리아 소셜 네트워크(2013년)
- ^ Rothschild, L. J.; Mancinelli, R. L. (2001). "Life in extreme environments". Nature. 409 (6823): 1092–101. Bibcode:2001Natur.409.1092R. doi:10.1038/35059215. PMID 11234023. S2CID 529873.
- ^ Nicholson, W. L.; Moeller, R.; Horneck, G. (2012). "Transcriptomic Responses of Germinating Bacillus subtilis Spores Exposed to 1.5 Years of Space and Simulated Martian Conditions on the EXPOSE-E Experiment PROTECT". Astrobiology. 12 (5): 469–86. Bibcode:2012AsBio..12..469N. doi:10.1089/ast.2011.0748. PMID 22680693.
- ^ Dublin, M.; Volz, P. A. (1973). "Space-related research in mycology concurrent with the first decade of manned space exploration". Space Life Sciences. 4 (2): 223–30. Bibcode:1973SLSci...4..223D. doi:10.1007/BF00924469. PMID 4598191. S2CID 11871141.
- ^ a b c d e f g Taylor, G. R.; Bailey, J. V.; Benton, E. V. (1975). "Physical dosimetric evaluations in the Apollo 16 microbial response experiment". Life Sciences in Space Research. 13: 135–41. PMID 11913418.
- ^ Olsson-Francis, K.; de la Torre, R.; Towner, M. C.; Cockell, C. S. (2009). "Survival of Akinetes (Resting-State Cells of Cyanobacteria) in Low Earth Orbit and Simulated Extraterrestrial Conditions". Origins of Life and Evolution of Biospheres. 39 (6): 565–579. Bibcode:2009OLEB...39..565O. doi:10.1007/s11084-009-9167-4. PMID 19387863. S2CID 7228756.
- ^ Moll, D. M.; Vestal, J. R. (1992). "Survival of microorganisms in smectite clays: Implications for Martian exobiology". Icarus. 98 (2): 233–9. Bibcode:1992Icar...98..233M. doi:10.1016/0019-1035(92)90092-L. PMID 11539360.
- ^ a b Roberts, T. L.; Wynne, E. S. (1962). "Studies with a simulated Martian environment". Journal of the Astronautical Sciences. 10: 65–74.
- ^ a b Hagen, C. A.; Hawrylewicz, E. J.; Ehrlich, R. (1967). "Survival of Microorganisms in a Simulated Martian Environment: II. Moisture and Oxygen Requirements for Germination of Bacillus cereus and Bacillus subtilis var. Niger Spores". Applied Microbiology. 15 (2): 285–291. doi:10.1128/AEM.15.2.285-291.1967. PMC 546892. PMID 4961769.
- ^ a b c d Hawrylewicz, E.; Gowdy, B.; Ehrlich, R. (1962). "Micro-organisms under a Simulated Martian Environment". Nature. 193 (4814): 497. Bibcode:1962Natur.193..497H. doi:10.1038/193497a0. S2CID 4149916.
- ^ a b Imshenetskiĭ, A. A.; Murzakov, B. G.; Evdokimova, M. D.; Dorofeeva, I. K. (1984). "Survival of bacteria in the Artificial Mars unit". Mikrobiologiia. 53 (5): 731–7. PMID 6439981.
- ^ Horneck, G. (2012). "Resistance of Bacterial Endospores to Outer Space for Planetary Protection Purposes—Experiment PROTECT of the EXPOSE-E Mission". Astrobiology. 12 (5): 445–56. Bibcode:2012AsBio..12..445H. doi:10.1089/ast.2011.0737. PMC 3371261. PMID 22680691.
- ^ a b Hotchin, J.; Lorenz, P.; Hemenway, C. (1965). "Survival of Micro-Organisms in Space". Nature. 206 (4983): 442–445. Bibcode:1965Natur.206..442H. doi:10.1038/206442a0. PMID 4284122. S2CID 4156325.
- ^ Horneck, G.; Bücker, H.; Reitz, G. (1994). "Long-term survival of bacterial spores in space". Advances in Space Research. 14 (10): 41–5. Bibcode:1994AdSpR..14...41H. doi:10.1016/0273-1177(94)90448-0. PMID 11539977.
- ^ Fajardo-Cavazos, P.; Link, L.; Melosh, H. J.; Nicholson, W. L. (2005). "Bacillus subtilisSpores on Artificial Meteorites Survive Hypervelocity Atmospheric Entry: Implications for Lithopanspermia". Astrobiology. 5 (6): 726–36. Bibcode:2005AsBio...5..726F. doi:10.1089/ast.2005.5.726. PMID 16379527.
- ^ a b Brandstätter, F. (2008). "Mineralogical alteration of artificial meteorites during atmospheric entry. The STONE-5 experiment". Planetary and Space Science. 56 (7): 976–984. Bibcode:2008P&SS...56..976B. CiteSeerX 10.1.1.549.4307. doi:10.1016/j.pss.2007.12.014.
- ^ Wassmann, M. (2012). "Survival of Spores of the UV-ResistantBacillus subtilisStrain MW01 After Exposure to Low-Earth Orbit and Simulated Martian Conditions: Data from the Space Experiment ADAPT on EXPOSE-E". Astrobiology. 12 (5): 498–507. Bibcode:2012AsBio..12..498W. doi:10.1089/ast.2011.0772. PMID 22680695.
- ^ Nicholson, Wayne L.; Krivushin, Kirill; Gilichinsky, u; Schuerger, Andrew C. (24 December 2012). "Growth of Carnobacterium spp. from permafrost under low pressure, temperature, and anoxic atmosphere has implications for Earth microbes on Mars". PNAS USA. 110 (2): 666–671. Bibcode:2013PNAS..110..666N. doi:10.1073/pnas.1209793110. PMC 3545801. PMID 23267097.
- ^ Cockell, C. S.; Schuerger, A. C.; Billi, D.; Imre Friedmann, E.; Panitz, C. (2005). "Effects of a Simulated Martian UV Flux on the Cyanobacterium, Chroococcidiopsis sp. 029". Astrobiology. 5 (2): 127–140. Bibcode:2005AsBio...5..127C. doi:10.1089/ast.2005.5.127. PMID 15815164.
- ^ Billi, D. (2011). "Damage Escape and Repair in Dried Chroococcidiopsis spp. From Hot and Cold Deserts Exposed to Simulated Space and Martian Conditions". Astrobiology. 11 (1): 65–73. Bibcode:2011AsBio..11...65B. doi:10.1089/ast.2009.0430. PMID 21294638.
- ^ Baqué, Mickael; de Vera, Jean-Pierre; Rettberg, Petra; Billi, Daniela (20 August 2013). "The BOSS and BIOMEX space experiments on the EXPOSE-R2 mission: Endurance of the desert cyanobacterium Chroococcidiopsis under simulated space vacuum, Martian atmosphere, UVC radiation and temperature extremes". Acta Astronautica. 91: 180–186. Bibcode:2013AcAau..91..180B. doi:10.1016/j.actaastro.2013.05.015.
- ^ a b c d e Cockell, Charles S.; Rettberg, Petra; Rabbow, Elke; Olson-Francis, Karen (19 May 2011). "Exposure of phototrophs to 548 days in low Earth orbit: microbial selection pressures in outer space and on early earth". The ISME Journal. 5 (10): 1671–1682. doi:10.1038/ismej.2011.46. PMC 3176519. PMID 21593797.
- ^ a b Parfenov, G. P.; Lukin, A. A. (1973). "Results and prospects of microbiological studies in outer space". Space Life Sciences. 4 (1): 160–179. Bibcode:1973SLSci...4..160P. doi:10.1007/BF02626350. PMID 4576727. S2CID 11421221.
- ^ a b c d e Koike, J. (1996). "Fundamental studies concerning planetary quarantine in space". Advances in Space Research. 18 (1–2): 339–44. Bibcode:1996AdSpR..18a.339K. doi:10.1016/0273-1177(95)00825-Y. PMID 11538982.
- ^ Deinoccus spp 세포응집체의 생존과 DNA 손상. 탄포포 미션에서 2년 동안 우주에 노출되었습니다.가와구치, 유코, 하시모토, 히로후미, 요코보리, 신이치, 야마기시, 아키히코, 시부야, 미오, 기노시타, 이오리, 하야시, 리사코, 야타베, 준, 나루미, 이세이, 후지와라, 다이스케, 무라노, 42.2018년 7월 14일부터 22일까지 미국 캘리포니아주 패서디나에서 Abstract ID로 개최.F3.1-5-18.2018년 7월
- ^ Yamagishi Akihiko, Kawaguchi Yuko, Hashimoto Hirofumi, Yano Hajime, Imai Eiichi, Kodaira Satoshi, Uchihori Yukio, Nakagawa Kazumichi (2018). "Environmental Data and Survival Data of Deinococcus aetherius from the Exposure Facility of the Japan Experimental Module of the International Space Station Obtained by the Tanpopo Mission". Astrobiology. 18 (11): 1369–1374. Bibcode:2018AsBio..18.1369Y. doi:10.1089/ast.2017.1751. PMID 30289276.
{{cite journal}}
: CS1 maint: 여러 이름: 작성자 목록(링크) - ^ 미션 준비 시험으로서 디노코커스 지열 바이오필름과 플랑크톤 세포의 비교 조사 BOSS.EPSC 요약제8권, EPSC2013-930, 2013.유럽 행성 과학 콩그레스 2013.
- ^ a b Dose, K. (1995). "ERA-experiment "space biochemistry"". Advances in Space Research. 16 (8): 119–29. Bibcode:1995AdSpR..16h.119D. doi:10.1016/0273-1177(95)00280-R. PMID 11542696.
- ^ Mastrapa, R. M. E; Glanzberg, H.; Head, J. N; Melosh, H. J; Nicholson, W. L (2001). "Survival of bacteria exposed to extreme acceleration: Implications for panspermia". Earth and Planetary Science Letters. 189 (1–2): 1–8. Bibcode:2001E&PSL.189....1M. doi:10.1016/S0012-821X(01)00342-9.
- ^ De La Vega, U. P.; Rettberg, P.; Reitz, G. (2007). "Simulation of the environmental climate conditions on martian surface and its effect on Deinococcus radiodurans". Advances in Space Research. 40 (11): 1672–1677. Bibcode:2007AdSpR..40.1672D. doi:10.1016/j.asr.2007.05.022.
- ^ Strickland, Ashley (26 August 2020). "Bacteria from Earth can survive in space and could endure the trip to Mars, according to new study". CNN News. Retrieved 26 August 2020.
- ^ Kawaguchi, Yuko; et al. (26 August 2020). "DNA Damage and Survival Time Course of Deinococcal Cell Pellets During 3 Years of Exposure to Outer Space". Frontiers in Microbiology. 11: 2050. doi:10.3389/fmicb.2020.02050. PMC 7479814. PMID 32983036.
- ^ Young, R. S.; Deal, P. H.; Bell, J.; Allen, J. L. (1964). "Bacteria under simulated Martian conditions". Life Sciences in Space Research. 2: 105–11. PMID 11881642.
- ^ a b c d Grigoryev, Y. G. (1972). "Influence of Cosmos 368 space flight conditions on radiation effects in yeasts, hydrogen bacteria and seeds of lettuce and pea". Life Sciences in Space Research. 10: 113–8. PMID 11898831.
- ^ Willis, M.; Ahrens, T.; Bertani, L.; Nash, C. (2006). "Bugbuster—survivability of living bacteria upon shock compression". Earth and Planetary Science Letters. 247 (3–4): 185–196. Bibcode:2006E&PSL.247..185W. doi:10.1016/j.epsl.2006.03.054.
- ^ a b c d e de Vera, J. P.; Dulai, S.; Kereszturi, A.; Koncz, L.; Pocs, T. (17 October 2013). "Results on the survival of cryptobiotic cyanobacteria samples after exposure to Mars-like environmental conditions". International Journal of Astrobiology. 13 (1): 35–44. Bibcode:2014IJAsB..13...35D. doi:10.1017/S1473550413000323. S2CID 83647440.
- ^ a b Mancinelli, R. L.; White, M. R.; Rothschild, L. J. (1998). "Biopan-survival I: Exposure of the osmophiles Synechococcus SP. (Nageli) and Haloarcula SP. To the space environment". Advances in Space Research. 22 (3): 327–334. Bibcode:1998AdSpR..22..327M. doi:10.1016/S0273-1177(98)00189-6.
- ^ Imshenetskiĭ, A. A.; Kuzyurina, L. A.; Yakshina, V.M. (1979). "Xerophytic microorganisms multiplying under conditions close to Martian ones". Mikrobiologiia. 48 (1): 76–9. PMID 106224.
- ^ a b c d e Hawrylewicz, E.; Hagen, C. A.; Tolkacz, V.; Anderson, B. T.; Ewing, M. (1968). "Probability of growth pG of viable microorganisms in Martian environments". Life Sciences in Space Research VI. pp. 146–156.
- ^ a b c d e f g Zhukova, A. I.; Kondratyev, I. I. (1965). "On artificial Martian conditions reproduced for microbiological research". Life Sciences in Space Research. 3: 120–6. PMID 12199257.
- ^ Jänchena, Jochen; Feyha, Nina; Szewzyka, Ulrich; de Vera, Jean-Pierre P. (3 August 2015). "Provision of water by halite deliquescence for Nostoc commune biofilms under Mars relevant surface conditions". International Journal of Astrobiology. 15 (2): 107–118. Bibcode:2016IJAsB..15..107J. doi:10.1017/S147355041500018X.
- ^ Burchell, M. (2001). "Survivability of Bacteria in Hypervelocity Impact". Icarus. 154 (2): 545–547. Bibcode:2001Icar..154..545B. doi:10.1006/icar.2001.6738.
- ^ Raktim, Roy; Phani, Shilpa P.; Sangram, Bagh (1 September 2016). "A Systems Biology Analysis Unfolds the Molecular Pathways and Networks of Two Proteobacteria in Spaceflight and Simulated Microgravity Conditions". Astrobiology. 16 (9): 677–689. Bibcode:2016AsBio..16..677R. doi:10.1089/ast.2015.1420. PMID 27623197.
- ^ Roten, C. A.; Gallusser, A.; Borruat, G. D.; Udry, S. D.; Karamata, D. (1998). "Impact resistance of bacteria entrapped in small meteorites". Bulletin de la Société Vaudoise des Sciences Naturelles. 86 (1): 1–17.
- ^ a b c d Koike, J.; Oshima, T.; Kobayashi, K.; Kawasaki, Y. (1995). "Studies in the search for life on Mars". Advances in Space Research. 15 (3): 211–4. Bibcode:1995AdSpR..15..211K. doi:10.1016/S0273-1177(99)80086-6. PMID 11539227.
- ^ "Expose-R: Exposure of Osmophilic Microbes to Space Environment". NASA. 26 April 2013. Archived from the original on 7 April 2013. Retrieved 2013-08-07.
- ^ a b Mancinelli, R. L. (January 2015). "The affect [sic] of the space environment on the survival of Halorubrum chaoviator and Synechococcus (Nägeli): data from the Space Experiment OSMO on EXPOSE-R". International Journal of Astrobiology. 14 (Special Issue 1): 123–128. Bibcode:2015IJAsB..14..123M. doi:10.1017/S147355041400055X. S2CID 44120218. Retrieved 2015-05-09.
- ^ Klementiev, K. E.; Maksimov, E. G.; Gvozdev, D. A.; Tsoraev, G. V.; et al. (2019). "Radioprotective role of cyanobacterial phycobilisomes". Biochimica et Biophysica Acta (BBA) - Bioenergetics. 1860 (2): 121–128. Bibcode:2019BBAB.1860..121K. doi:10.1016/j.bbabio.2018.11.018. PMID 30465750.
- ^ a b Stan-Lotter, H. (2002). "Astrobiology with haloarchaea from Permo-Triassic rock salt". International Journal of Astrobiology. 1 (4): 271–284. Bibcode:2002IJAsB...1..271S. doi:10.1017/S1473550403001307. S2CID 86665831.
- ^ Shiladitya DasSarma. "Extreme Halophiles Are Models for Astrobiology". American Society for Microbiology. Archived from the original on 2011-07-22.
- ^ a b "Expose-R: Exposure of Osmophilic Microbes to Space Environment". NASA. 26 April 2013. Archived from the original on 7 April 2013. Retrieved 2013-08-07.
- ^ a b c Morozova, D.; Möhlmann, D.; Wagner, D. (2006). "Survival of Methanogenic Archaea from Siberian Permafrost under Simulated Martian Thermal Conditions" (PDF). Origins of Life and Evolution of Biospheres. 37 (2): 189–200. Bibcode:2007OLEB...37..189M. doi:10.1007/s11084-006-9024-7. PMID 17160628. S2CID 15620946.
- ^ Sarantopoulou, E.; Gomoiu, I.; Kollia, Z.; Cefalas, A.C. (2011). "Interplanetary survival probability of Aspergillus terreus spores under simulated solar vacuum ultraviolet irradiation" (PDF). Planetary and Space Science. 59 (1): 63–78. Bibcode:2011P&SS...59...63S. doi:10.1016/j.pss.2010.11.002. hdl:10442/15561.
- ^ Novikova, N.; Deshevaya, E.; Levinskikh, M.; Polikarpov, N.; Poddubko, S. (January 2015). "Study of the effects of the outer space environment on dormant forms of microorganisms, fungi and plants in the 'Expose-R' experiment". International Journal of Astrobiology. 14 (1): 137–142. Bibcode:2015IJAsB..14..137N. doi:10.1017/S1473550414000731. S2CID 85458386.
- ^ Sarantopoulou, E.; Stefi, A.; Kollia, Z.; Palles, D.; Petrou, .P.S.; Bourkoula, A.; Koukouvinos, G.; Velentzas, A.D.; Kakabakos, S.; Cefalas, A.C. (2014). "Viability of Cladosporium herbarum spores under 157 nm laser and vacuum ultraviolet irradiation, low temperature (10 K) and vacuum". Journal of Applied Physics. 116 (10): 104701. Bibcode:2014JAP...116j4701S. doi:10.1063/1.4894621.
- ^ a b Wall, Mike (January 29, 2016). "Fungi Survive Mars-Like Conditions On Space Station". Space.com. Retrieved 2016-01-29.
- ^ BIOMEX 실험: 실험 검증 테스트 후 극초구조 변화, 분자 손상 및 남극진균의 생존.클라우디아 파첼리, 로라 셀브만, 로라 주코니, 장 피에르 드 베라, 엘케 랍보우, 게르다 호넥, 로사 드 라 토레, 실바노 오노프리생명의 기원과 생물권의 진화.2017년 6월 제47권 제2호, 페이지 187–202
- ^ Häder DP, Richter PR, Strauch SM, et al. (2006). "Aquacells — Flagellates under long-term microgravity and potential usage for life support systems". Microgravity Sci. Technol. 18 (210): 210–214. Bibcode:2006MicST..18..210H. doi:10.1007/BF02870411. S2CID 121659796.
- ^ Nasir A, Strauch SM, Becker I, Sperling A, Schuster M, Richter PR, Weißkopf M, Ntefidou M, Daiker V, An YA, Li XY, Liu YD, Lebert M, Legué V (2014). "The influence of microgravity on Euglena gracilis as studied on Shenzhou 8". Plant Biol J. 16: 113–119. doi:10.1111/plb.12067. PMID 23926886.
- ^ Strauch Sebastian M., Becker Ina, Pölloth Laura, Richter Peter R., Haag Ferdinand W. M., Hauslage Jens, Lebert Michael (2018). "Restart capability of resting-states of Euglena gracilis after 9 months of dormancy: preparation for autonomous space flight experiments". International Journal of Astrobiology. 17 (2): 101–111. Bibcode:2018IJAsB..17..101S. doi:10.1017/S1473550417000131. S2CID 90868067.
{{cite journal}}
: CS1 maint: 여러 이름: 작성자 목록(링크) - ^ Strauch S.M., Richter P., Schuster M., Häder D.-P. (2010). "The beating pattern of the flagellum of Euglena gracilis under altered gravity during parabolic flights". Journal of Plant Physiology. 167 (1): 41–46. doi:10.1016/j.jplph.2009.07.009. PMID 19679374.
{{cite journal}}
: CS1 maint: 여러 이름: 작성자 목록(링크) - ^ Pasini, J. L. S.; Price, M. C. (2015). Panspermia survival scenarios for organisms that survive typical hypervelocity solar system impact events (PDF). 46th Lunar and Planetary Science Conference.
- ^ 파시니 D. L. S. 등LPSC44, 1497. (2013).
- ^ 파시니 D. L. S. 등EPSC2013, 396. (2013).
- ^ Zimmermann, M. W.; Gartenbach, K. E.; Kranz, A. R. (1994). "First radiobiological results of LDEF-1 experiment A0015 with Arabidopsis seed embryos and Sordaria fungus spores". Advances in Space Research. 14 (10): 47–51. Bibcode:1994AdSpR..14...47Z. doi:10.1016/0273-1177(94)90449-9. PMID 11539984.
- ^ a b c Sánchez, Francisco Javier; Meeßen, Joachim; Ruiza, M. del Carmen; Sancho, Leopoldo G.; de la Torre, Rosa (6 September 2013). "UV-C tolerance of symbiotic Trebouxia sp. in the space-tested lichen species Rhizocarpon geographicum and Circinaria gyrosa: role of the hydration state and cortex/screening substances". International Journal of Astrobiology. 13 (1): 1–18. Bibcode:2014IJAsB..13....1S. doi:10.1017/S147355041300027X.
- ^ Neuberger, Katja; Lux-Endrich, Astrid; Panitz, Corinna; Horneck, Gerda (January 2015). "Survival of Spores of Trichoderma longibrachiatum in Space: data from the Space Experiment SPORES on EXPOSE-R". International Journal of Astrobiology. 14 (Special Issue 1): 129–135. Bibcode:2015IJAsB..14..129N. doi:10.1017/S1473550414000408. S2CID 121455217.
- ^ Raggio, J. (2011). "Whole Lichen Thalli Survive Exposure to Space Conditions: Results of Lithopanspermia Experiment withAspicilia fruticulosa". Astrobiology. 11 (4): 281–92. Bibcode:2011AsBio..11..281R. doi:10.1089/ast.2010.0588. PMID 21545267.
- ^ Meeßen, J.; Wuthenow, P.; Schille, P.; Rabbow, E.; de Vera, J.-P.P (August 2015). "Resistance of the Lichen Buellia frigida to Simulated Space Conditions during the Preflight Tests for BIOMEX—Viability Assay and Morphological Stability". Astrobiology. 15 (8): 601–615. Bibcode:2015AsBio..15..601M. doi:10.1089/ast.2015.1281. PMC 4554929. PMID 26218403.
- ^ Rosa, Zélia Miller Ana, Cubero Beatriz, Martín-Cerezo M. Luisa, Raguse Marina, Meeßen Joachim (2017). "The Effect of High-Dose Ionizing Radiation on the Astrobiological Model Lichen Circinaria gyrosa". Astrobiology. 17 (2): 145–153. Bibcode:2017AsBio..17..145D. doi:10.1089/ast.2015.1454. PMID 28206822.
{{cite journal}}
: CS1 maint: 여러 이름: 작성자 목록(링크) - ^ de La Torre Noetzel, R. (2007). "BIOPAN experiment LICHENS on the Foton M2 mission: Pre-flight verification tests of the Rhizocarpon geographicum-granite ecosystem". Advances in Space Research. 40 (11): 1665–1671. Bibcode:2007AdSpR..40.1665D. doi:10.1016/j.asr.2007.02.022.
- ^ Sancho, L. G. (2007). "Lichens survive in space: Results from the 2005 LICHENS experiment". Astrobiology. 7 (3): 443–54. Bibcode:2007AsBio...7..443S. doi:10.1089/ast.2006.0046. PMID 17630840.
- ^ a b De Vera, J.-P.; Horneck, G.; Rettberg, P.; Ott, S. (2004). "The potential of the lichen symbiosis to cope with the extreme conditions of outer space II: Germination capacity of lichen ascospores in response to simulated space conditions". Advances in Space Research. 33 (8): 1236–43. Bibcode:2004AdSpR..33.1236D. doi:10.1016/j.asr.2003.10.035. PMID 15806704.
- ^ Horneck, G. (2008). "Microbial Rock Inhabitants Survive Hypervelocity Impacts on Mars-Like Host Planets: First Phase of Lithopanspermia Experimentally Tested". Astrobiology. 8 (1): 17–44. Bibcode:2008AsBio...8...17H. doi:10.1089/ast.2007.0134. PMID 18237257.
- ^ Brandt, Annette; De Vera, Jean-Pierre; Onofri, Silvano; Ott, Sieglinde (2014). "Viability of the lichen Xanthoria elegans and its symbionts after 18 months of space exposure and simulated Mars conditions on the ISS". International Journal of Astrobiology. 14 (3): 411–425. Bibcode:2015IJAsB..14..411B. doi:10.1017/S1473550414000214.
- ^ Horneck G, et al. (2008). "Microbial rock inhabitants survive hypervelocity impacts on Mars-like host planets: first phase of lithopanspermia experimentally tested". Astrobiology. 8 (1): 17–44. Bibcode:2008AsBio...8...17H. doi:10.1089/ast.2007.0134. PMID 18237257.
- ^ a b c d Hotchin, J. (1968). "The Microbiology of Space". Journal of the British Interplanetary Society. 21: 122. Bibcode:1968JBIS...21..122H.
- ^ Higashibata A (2006). "Decreased expression of myogenic transcription factors and myosin heavy chains in Caenorhabditis elegans muscles developed during spaceflight". Journal of Experimental Biology. 209 (16): 3209–3218. doi:10.1242/jeb.02365. PMID 16888068.
- ^ 국제 엘레강스 비행 유전체 실험(ICE-First-Genomics)2016년 11월 22일
- ^ 파시니 D. L. S. 등LPSC45, 1789. (2014).
- ^ 파시니 D. L. S. 등EPSC2014, 67. (2014).
- ^ a b Jönsson, K. I.; Rabbow, E.; Schill, Ralph O.; Harms-Ringdahl, M.; Rettberg, P. (2008). "Tardigrades survive exposure to space in low Earth orbit". Current Biology. 18 (17): R729–R731. doi:10.1016/j.cub.2008.06.048. PMID 18786368. S2CID 8566993.
- ^ "BIOKon In Space (BIOKIS)". NASA. 17 May 2011. Archived from the original on 17 April 2011. Retrieved 2011-05-24.
- ^ Brennard, Emma (17 May 2011). "Tardigrades: Water bears in space". BBC. Retrieved 2011-05-24.
- ^ a b Jönsson, K. Ingemar; Wojcik, Andrzej (February 2017). "Tolerance to X-rays and Heavy Ions (Fe, He) in the Tardigrade Richtersius coronifer and the Bdelloid Rotifer Mniobia russeola". Astrobiology. 17 (2): 163–167. Bibcode:2017AsBio..17..163J. doi:10.1089/ast.2015.1462. ISSN 1531-1074. PMID 28206820.