PSMD7
PSMD726S 프로테아솜 비 ATPase 규제 서브 유닛 Rpn8로도 알려진 26S 프로테아솜 비 ATPase 규제 서브 유닛 7은 인간에서 PSMD7 유전자에 의해 인코딩되는 효소다.[5][6]
26S 프로테아솜은 20S 코어 및 19S 레귤레이터 2개 콤플렉스로 구성된 고순도 구조의 다분석성 단백질효소 복합체다.20S 코어는 28개의 비식별 서브유닛 중 4개의 링으로 구성되며, 2개의 링은 7개의 알파 서브유닛으로 구성되고 2개의 링은 7개의 베타 서브유닛으로 구성된다.19S 조절기는 6개의 ATPase 서브유닛과 2개의 비 ATPase 서브유닛을 포함하는 베이스와 최대 10개의 비 ATPase 서브유닛을 포함하는 뚜껑으로 구성된다.프로테아솜은 높은 농도의 진핵 세포와 클레이브 펩타이드가 비 리소솜 경로에서 ATP/ubiquitin 의존적 공정으로 분산된다.변형된 프로테아솜의 필수적인 기능인 면역단백제는 클래스 I MHC 펩타이드의 처리다.
유전자
PSMD7 유전자는 19S 조절기의 비 ATPase 하위 단위를 암호화한다.17번 염색체에서 유사 유전자가 확인되었다.[6]인간 유전자 PSMD7은 7개의 Exon을 가지고 있으며 16q22.3 염색체 밴드에 위치한다.
단백질
인간 단백질 26S 프로테아솜 비 ATPase 규제 하위 유닛 14는 크기가 37 kDa이고 324개의 아미노산으로 구성되어 있다.이 단백질의 계산된 이론적 pI는 6.11이다.[7]
복합 조립체
26S 프로테아솜 콤플렉스는 보통 20S 코어 입자(CP 또는 20S 프로테아솜)와 배럴 모양의 20S 한쪽 또는 양쪽에 1개 또는 2개의 19S 규제 입자(RP 또는 19S 프로테아솜)로 구성된다.CP와 RP는 서로 다른 구조적 특성과 생물학적 기능을 가지고 있다.간단히 말해서, 20S 하위 단지는 카스파제 유사, 트립신 유사, 키모트립신 유사 활동을 포함한 세 가지 유형의 단백질 분해 활동을 제시한다.20S 서브유닛의 4개의 스택 링에 의해 형성된 챔버의 내측에 위치한 이러한 단백질 분해 활성 사이트는 무작위 단백질-엔자임 조우 및 제어되지 않은 단백질 저하를 방지한다.19S 규제 입자는 유비퀴틴 라벨이 부착된 단백질을 분해 기질로 인식하고, 단백질을 선형까지 펼치며, 20S 코어 입자의 문을 열고, 변전체를 프로톨리틱 챔버로 안내할 수 있다.그러한 기능적 복잡성을 충족시키기 위해 19S 규제 입자는 최소 18개의 구성 하위 단위를 포함한다.이러한 서브유닛은 서브유닛의 ATP 의존성, ATP 종속 서브유닛 및 ATP 독립 서브유닛에 근거한 두 가지 등급으로 분류할 수 있다.이 다단위 단지의 단백질 상호작용과 위상학적 특성에 따라 19S 규제 입자는 베이스와 리드 서브콤플렉스로 구성된다.베이스는 6개의 AAA ATPASes(Subunit Rpt1-6, 체계적 명명법)와 4개의 비 ATPase 서브유닛(Rpn1, Rpn2, Rpn10, Rpn13)으로 구성된 링으로 구성된다.19S 규제 입자의 뚜껑 서브 콤플렉스는 9개의 서브유닛으로 구성되었다.19S 리드의 조립은 19S 베이스의 조립 공정과 무관하다.효모 프로테아솜을 모델 콤플렉스로 사용한 19S 뚜껑 조립 과정에서 두 개의 조립 모듈인 Rpn5-Rpn6-Rpn8-Rpn9-Rpn9-Rpn11 모듈과 Rpn3-Rpn7-SEM1 모듈이 확인되었다.[8][9][10][11]19S 뚜껑과 베이스가 결합할 때 19S 규제 입자에 통합된 하위 장치 Rpn12.[12]사카로마이오스 세레비시아에서 격리된 프로테아솜의 결정구조에 대한 최근 증거는 촉매 활성 서브유닛 Rpn8과 서브유닛 Rpn11이 이단계를 형성한다는 것을 암시한다.이 데이터는 또한 Rpn11 활성 사이트의 세부 정보와 다른 서브유닛과의 상호작용 모드를 보여준다.[13]
함수
세포내 단백질 분해의 약 70%를 담당하는 분해기계로서 프로테아솜 콤플렉스(26S 프로테아솜)는 세포 프로테오메의 동태성을 유지하는 데 중요한 역할을 한다.[14]따라서 잘못 접힌 단백질과 손상된 단백질은 새로운 합성을 위해 아미노산을 재활용하기 위해 지속적으로 제거되어야 한다; 동시에, 일부 핵심 규제 단백질은 선택적 저하를 통해 생물학적 기능을 수행하며, 더욱이 단백질은 MHC 등급 I 항원 발현을 위해 펩타이드로 소화된다.공간적 및 시간적 단백질분해를 통해 생물학적 과정에서 이처럼 복잡한 요구를 충족시키기 위해서는 단백질 기판을 잘 통제된 방식으로 인식하고, 모집하고, 결국에는 가수분해해야 한다.따라서 19S 규제 입자는 이러한 기능적 과제를 해결하기 위한 일련의 중요한 기능을 포함한다.단백질을 지정된 기질로 인식하기 위해 19S 콤플렉스는 특수 분해 태그인 유비쿼터스비닐화(ubiquititial tag)로 단백질을 인식할 수 있는 서브유닛을 갖췄다.또한 19S와 20S 입자의 연계를 용이하게 하기 위해 뉴클레오티드(예: ATP)와 결합할 수 있는 서브유닛(subunit)을 가지고 있으며, 20S 단지의 하부 정문을 형성하는 알파 서브유닛 C-단자의 확인변경을 유발한다.
임상적 유의성
프로테아솜과 그 서브유닛은 적어도 두 가지 이유로 임상적으로 중요한데, (1) 손상된 복합체 결합 또는 기능장애 프로테아솜은 특정 질병의 근본적인 병태생리와 관련될 수 있으며, (2) 치료적 개입의 약물 대상으로 악용될 수 있다.보다 최근에는 새로운 진단 마커와 전략의 개발을 위한 프로테아솜을 고려하는 노력이 더 많이 이루어지고 있다.프로테아좀의 병태생리학에 대한 개선되고 포괄적인 이해는 향후 임상적 응용으로 이어져야 한다.
프로테아솜은 유비퀴틴-단백질 시스템(UPS)과 해당 세포 단백질 품질 관리(PQC)의 중추적 구성 요소를 형성한다.단백질 편재와 그에 따른 프로테아솜에 의한 단백질 분해와 분해는 세포 주기, 세포 성장과 분화, 유전자 전사, 신호 전달 및 세포 사멸의 조절에 있어 중요한 메커니즘이다.[16]그 후 단백질 복합체 조립 및 기능이 손상되면 단백질 분해 활동이 감소하고 단백질 종들이 손상되거나 잘못 접히는 현상이 발생한다.이러한 단백질이 축적되면 신경퇴행성질환,[17][18] 심혈관질환,[19][20][21] 염증반응 및 자가면역질환,[22] 전신 DNA손상반응에서 병생성과 표현특성에 기여하여 악성종양으로 이어질 수 있다.[23]
몇몇 임상 실험 연구 성격의 UPS수차와 규제 완화 등 몇몇이고myodegenerative 신경 퇴행성 질환의 발병에 기여하고의 disease,[26]근 위축성 측색 경화(근 위축성 측색 경화증)[26]헌팅턴 disease,[25]Creutz다 알츠하이머 disease,[24]파킨슨 병 disease[25]등을 표시했습니다.feldt–Jakob disease,[27]그리고 운동 뉴런 질환, 폴리글루타민(PolyQ) 질환, 근위축성[28] 및 치매와 관련된 몇 가지 희귀한 형태의 신경퇴행성 질환이 있다.[29]유비퀴틴-단백질계통(UPS)의 일부로서 프로테아솜은 심장 단백질 동점증을 유지하여 심장 허혈성 부상,[30] 심실 비대증[31], 심부전 등에 큰 역할을 한다.[32]게다가, UPS가 악성 변형에 필수적인 역할을 한다는 증거가 축적되고 있다.UPS 단백질 분해는 암의 발병에 중요한 자극 신호에 대한 암세포의 반응에 중요한 역할을 한다.따라서 p53, c-준, c-Fos, NF-bB, c-Myc, HIF-1α, MATα2, STAT3, 스테롤 조절 요소 결합 단백질 및 안드로겐 수용체와 같은 전사 인자의 저하로 인한 유전자 발현이 모두 UPS에 의해 제어되어 다양한 악성종양 개발에 관여한다.[33]Moreover, the UPS regulates the degradation of tumor suppressor gene products such as adenomatous polyposis coli (APC) in colorectal cancer, retinoblastoma (Rb). and von Hippel–Lindau tumor suppressor (VHL), as well as a number of proto-oncogenes (Raf, Myc, Myb, Rel, Src, Mos, ABL).UPS도 염증반응 규제에 관여하고 있다.이러한 활동은 대개 TNF-α, IL-β, IL-8, 접착분자(ICAM-1, VCAM-1, P-selectin)와 프로스타글란딘과 질산화물(NO)과 같은 프로테아그란딘의 발현을 더욱 조절하는 NF-164B의 활성화에 있어서 프로테아솜의 역할에 기인한다.[34]또한 UPS는 주로 사이클린의 단백질 분해와 CDK 억제제의 저하를 통해 백혈구 증식의 조절자로서 염증 반응에도 역할을 한다.[35]마지막으로, SLE, Sögren 증후군, 류마티스 관절염(RA)을 앓고 있는 자가면역질환자들은 임상 바이오마커로 응용할 수 있는 순환 프로테아솜을 주로 나타낸다.[36]
참조
- ^ a b c GRCh38: 앙상블 릴리스 89: ENSG00000103035 - 앙상블, 2017년 5월
- ^ a b c GRCm38: 앙상블 릴리스 89: ENSMUSG000039067 - 앙상블, 2017년 5월
- ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
- ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
- ^ Tsurumi C, DeMartino GN, Slaughter CA, Shimbara N, Tanaka K (May 1995). "cDNA cloning of p40, a regulatory subunit of the human 26S proteasome, and a homolog of the Mov-34 gene product". Biochemical and Biophysical Research Communications. 210 (2): 600–8. doi:10.1006/bbrc.1995.1701. PMID 7755639.
- ^ a b "Entrez Gene: PSMD7 proteasome (prosome, macropain) 26S subunit, non-ATPase, 7 (Mov34 homolog)".
- ^ "Uniprot: P51665 - PSMD7_HUMAN".
- ^ Le Tallec B, Barrault MB, Guérois R, Carré T, Peyroche A (Feb 2009). "Hsm3/S5b participates in the assembly pathway of the 19S regulatory particle of the proteasome". Molecular Cell. 33 (3): 389–99. doi:10.1016/j.molcel.2009.01.010. PMID 19217412.
- ^ Gödderz D, Dohmen RJ (Feb 2009). "Hsm3/S5b joins the ranks of 26S proteasome assembly chaperones". Molecular Cell. 33 (4): 415–6. doi:10.1016/j.molcel.2009.02.007. PMID 19250902.
- ^ Isono E, Nishihara K, Saeki Y, Yashiroda H, Kamata N, Ge L, Ueda T, Kikuchi Y, Tanaka K, Nakano A, Toh-e A (Feb 2007). "The assembly pathway of the 19S regulatory particle of the yeast 26S proteasome". Molecular Biology of the Cell. 18 (2): 569–80. doi:10.1091/mbc.E06-07-0635. PMC 1783769. PMID 17135287.
- ^ Fukunaga K, Kudo T, Toh-e A, Tanaka K, Saeki Y (Jun 2010). "Dissection of the assembly pathway of the proteasome lid in Saccharomyces cerevisiae". Biochemical and Biophysical Research Communications. 396 (4): 1048–53. doi:10.1016/j.bbrc.2010.05.061. PMID 20471955.
- ^ Tomko RJ, Hochstrasser M (Dec 2011). "Incorporation of the Rpn12 subunit couples completion of proteasome regulatory particle lid assembly to lid-base joining". Molecular Cell. 44 (6): 907–17. doi:10.1016/j.molcel.2011.11.020. PMC 3251515. PMID 22195964.
- ^ Pathare GR, Nagy I, Śledź P, Anderson DJ, Zhou HJ, Pardon E, Steyaert J, Förster F, Bracher A, Baumeister W (Feb 2014). "Crystal structure of the proteasomal deubiquitylation module Rpn8-Rpn11". Proceedings of the National Academy of Sciences of the United States of America. 111 (8): 2984–9. Bibcode:2014PNAS..111.2984P. doi:10.1073/pnas.1400546111. PMC 3939901. PMID 24516147.
- ^ Rock KL, Gramm C, Rothstein L, Clark K, Stein R, Dick L, Hwang D, Goldberg AL (Sep 1994). "Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules". Cell. 78 (5): 761–71. doi:10.1016/s0092-8674(94)90462-6. PMID 8087844. S2CID 22262916.
- ^ Kleiger G, Mayor T (Jun 2014). "Perilous journey: a tour of the ubiquitin–proteasome system". Trends in Cell Biology. 24 (6): 352–9. doi:10.1016/j.tcb.2013.12.003. PMC 4037451. PMID 24457024.
- ^ Goldberg, AL; Stein, R; Adams, J (August 1995). "New insights into proteasome function: from archaebacteria to drug development". Chemistry & Biology. 2 (8): 503–8. doi:10.1016/1074-5521(95)90182-5. PMID 9383453.
- ^ Sulistio YA, Heese K (Jan 2015). "The Ubiquitin–Proteasome System and Molecular Chaperone Deregulation in Alzheimer's Disease". Molecular Neurobiology. 53 (2): 905–31. doi:10.1007/s12035-014-9063-4. PMID 25561438. S2CID 14103185.
- ^ Ortega Z, Lucas JJ (2014). "Ubiquitin–proteasome system involvement in Huntington's disease". Frontiers in Molecular Neuroscience. 7: 77. doi:10.3389/fnmol.2014.00077. PMC 4179678. PMID 25324717.
- ^ Sandri M, Robbins J (Jun 2014). "Proteotoxicity: an underappreciated pathology in cardiac disease". Journal of Molecular and Cellular Cardiology. 71: 3–10. doi:10.1016/j.yjmcc.2013.12.015. PMC 4011959. PMID 24380730.
- ^ Drews O, Taegtmeyer H (Dec 2014). "Targeting the ubiquitin-proteasome system in heart disease: the basis for new therapeutic strategies". Antioxidants & Redox Signaling. 21 (17): 2322–43. doi:10.1089/ars.2013.5823. PMC 4241867. PMID 25133688.
- ^ Wang ZV, Hill JA (Feb 2015). "Protein quality control and metabolism: bidirectional control in the heart". Cell Metabolism. 21 (2): 215–26. doi:10.1016/j.cmet.2015.01.016. PMC 4317573. PMID 25651176.
- ^ Karin, M; Delhase, M (2000). "The I kappa B kinase (IKK) and NF-kappa B: Key elements of proinflammatory signalling". Seminars in Immunology. 12 (1): 85–98. doi:10.1006/smim.2000.0210. PMID 10723801.
- ^ Ermolaeva MA, Dakhovnik A, Schumacher B (Jan 2015). "Quality control mechanisms in cellular and systemic DNA damage responses". Ageing Research Reviews. 23 (Pt A): 3–11. doi:10.1016/j.arr.2014.12.009. PMC 4886828. PMID 25560147.
- ^ Checler, F; da Costa, CA; Ancolio, K; Chevallier, N; Lopez-Perez, E; Marambaud, P (26 July 2000). "Role of the proteasome in Alzheimer's disease". Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease. 1502 (1): 133–8. doi:10.1016/s0925-4439(00)00039-9. PMID 10899438.
- ^ a b Chung, KK; Dawson, VL; Dawson, TM (November 2001). "The role of the ubiquitin-proteasomal pathway in Parkinson's disease and other neurodegenerative disorders". Trends in Neurosciences. 24 (11 Suppl): S7–14. doi:10.1016/s0166-2236(00)01998-6. PMID 11881748. S2CID 2211658.
- ^ a b Ikeda, K; Akiyama, H; Arai, T; Ueno, H; Tsuchiya, K; Kosaka, K (July 2002). "Morphometrical reappraisal of motor neuron system of Pick's disease and amyotrophic lateral sclerosis with dementia". Acta Neuropathologica. 104 (1): 21–8. doi:10.1007/s00401-001-0513-5. PMID 12070660. S2CID 22396490.
- ^ Manaka, H; Kato, T; Kurita, K; Katagiri, T; Shikama, Y; Kujirai, K; Kawanami, T; Suzuki, Y; Nihei, K; Sasaki, H (11 May 1992). "Marked increase in cerebrospinal fluid ubiquitin in Creutzfeldt–Jakob disease". Neuroscience Letters. 139 (1): 47–9. doi:10.1016/0304-3940(92)90854-z. PMID 1328965. S2CID 28190967.
- ^ Mathews, KD; Moore, SA (January 2003). "Limb-girdle muscular dystrophy". Current Neurology and Neuroscience Reports. 3 (1): 78–85. doi:10.1007/s11910-003-0042-9. PMID 12507416. S2CID 5780576.
- ^ Mayer, RJ (March 2003). "From neurodegeneration to neurohomeostasis: the role of ubiquitin". Drug News & Perspectives. 16 (2): 103–8. doi:10.1358/dnp.2003.16.2.829327. PMID 12792671.
- ^ Calise, J; Powell, S. R. (2013). "The ubiquitin proteasome system and myocardial ischemia". AJP: Heart and Circulatory Physiology. 304 (3): H337–49. doi:10.1152/ajpheart.00604.2012. PMC 3774499. PMID 23220331.
- ^ Predmore, JM; Wang, P; Davis, F; Bartolone, S; Westfall, MV; Dyke, DB; Pagani, F; Powell, SR; Day, SM (2 March 2010). "Ubiquitin proteasome dysfunction in human hypertrophic and dilated cardiomyopathies". Circulation. 121 (8): 997–1004. doi:10.1161/circulationaha.109.904557. PMC 2857348. PMID 20159828.
- ^ Powell, SR (July 2006). "The ubiquitin-proteasome system in cardiac physiology and pathology". American Journal of Physiology. Heart and Circulatory Physiology. 291 (1): H1–H19. doi:10.1152/ajpheart.00062.2006. PMID 16501026.
- ^ Adams, J (1 April 2003). "Potential for proteasome inhibition in the treatment of cancer". Drug Discovery Today. 8 (7): 307–15. doi:10.1016/s1359-6446(03)02647-3. PMID 12654543.
- ^ Karin, M; Delhase, M (February 2000). "The I kappa B kinase (IKK) and NF-kappa B: key elements of proinflammatory signalling". Seminars in Immunology. 12 (1): 85–98. doi:10.1006/smim.2000.0210. PMID 10723801.
- ^ Ben-Neriah, Y (January 2002). "Regulatory functions of ubiquitination in the immune system". Nature Immunology. 3 (1): 20–6. doi:10.1038/ni0102-20. PMID 11753406. S2CID 26973319.
- ^ Egerer, K; Kuckelkorn, U; Rudolph, PE; Rückert, JC; Dörner, T; Burmester, GR; Kloetzel, PM; Feist, E (October 2002). "Circulating proteasomes are markers of cell damage and immunologic activity in autoimmune diseases". The Journal of Rheumatology. 29 (10): 2045–52. PMID 12375310.
추가 읽기
- Coux O, Tanaka K, Goldberg AL (1996). "Structure and functions of the 20S and 26S proteasomes". Annual Review of Biochemistry. 65: 801–47. doi:10.1146/annurev.bi.65.070196.004101. PMID 8811196.
- Goff SP (Aug 2003). "Death by deamination: a novel host restriction system for HIV-1". Cell. 114 (3): 281–3. doi:10.1016/S0092-8674(03)00602-0. PMID 12914693. S2CID 16340355.
- Gridley T, Gray DA, Orr-Weaver T, Soriano P, Barton DE, Francke U, Jaenisch R (May 1990). "Molecular analysis of the Mov 34 mutation: transcript disrupted by proviral integration in mice is conserved in Drosophila". Development. 109 (1): 235–42. doi:10.1242/dev.109.1.235. PMID 2209467.
- Winkelmann DA, Kahan L (Apr 1983). "Immunochemical accessibility of ribosomal protein S4 in the 30 S ribosome. The interaction of S4 with S5 and S12". Journal of Molecular Biology. 165 (2): 357–74. doi:10.1016/S0022-2836(83)80261-7. PMID 6188845.
- Seeger M, Ferrell K, Frank R, Dubiel W (Mar 1997). "HIV-1 tat inhibits the 20 S proteasome and its 11 S regulator-mediated activation". The Journal of Biological Chemistry. 272 (13): 8145–8. doi:10.1074/jbc.272.13.8145. PMID 9079628.
- Mahalingam S, Ayyavoo V, Patel M, Kieber-Emmons T, Kao GD, Muschel RJ, Weiner DB (Mar 1998). "HIV-1 Vpr interacts with a human 34-kDa mov34 homologue, a cellular factor linked to the G2/M phase transition of the mammalian cell cycle". Proceedings of the National Academy of Sciences of the United States of America. 95 (7): 3419–24. Bibcode:1998PNAS...95.3419M. doi:10.1073/pnas.95.7.3419. PMC 19851. PMID 9520381.
- Madani N, Kabat D (Dec 1998). "An endogenous inhibitor of human immunodeficiency virus in human lymphocytes is overcome by the viral Vif protein". Journal of Virology. 72 (12): 10251–5. doi:10.1128/JVI.72.12.10251-10255.1998. PMC 110608. PMID 9811770.
- Simon JH, Gaddis NC, Fouchier RA, Malim MH (Dec 1998). "Evidence for a newly discovered cellular anti-HIV-1 phenotype". Nature Medicine. 4 (12): 1397–400. doi:10.1038/3987. PMID 9846577. S2CID 25235070.
- Mulder LC, Muesing MA (Sep 2000). "Degradation of HIV-1 integrase by the N-end rule pathway". The Journal of Biological Chemistry. 275 (38): 29749–53. doi:10.1074/jbc.M004670200. PMID 10893419.
- Sheehy AM, Gaddis NC, Choi JD, Malim MH (Aug 2002). "Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein". Nature. 418 (6898): 646–50. Bibcode:2002Natur.418..646S. doi:10.1038/nature00939. PMID 12167863. S2CID 4403228.
- Ramanathan MP, Curley E, Su M, Chambers JA, Weiner DB (Dec 2002). "Carboxyl terminus of hVIP/mov34 is critical for HIV-1-Vpr interaction and glucocorticoid-mediated signaling". The Journal of Biological Chemistry. 277 (49): 47854–60. doi:10.1074/jbc.M203905200. PMID 12237292.
- Thompson HG, Harris JW, Wold BJ, Quake SR, Brody JP (Oct 2002). "Identification and confirmation of a module of coexpressed genes". Genome Research. 12 (10): 1517–22. doi:10.1101/gr.418402. PMC 187523. PMID 12368243.
- Huang X, Seifert U, Salzmann U, Henklein P, Preissner R, Henke W, Sijts AJ, Kloetzel PM, Dubiel W (Nov 2002). "The RTP site shared by the HIV-1 Tat protein and the 11S regulator subunit alpha is crucial for their effects on proteasome function including antigen processing". Journal of Molecular Biology. 323 (4): 771–82. doi:10.1016/S0022-2836(02)00998-1. PMID 12419264.
- Gaddis NC, Chertova E, Sheehy AM, Henderson LE, Malim MH (May 2003). "Comprehensive investigation of the molecular defect in vif-deficient human immunodeficiency virus type 1 virions". Journal of Virology. 77 (10): 5810–20. doi:10.1128/JVI.77.10.5810-5820.2003. PMC 154025. PMID 12719574.
- Lecossier D, Bouchonnet F, Clavel F, Hance AJ (May 2003). "Hypermutation of HIV-1 DNA in the absence of the Vif protein". Science. 300 (5622): 1112. doi:10.1126/science.1083338. PMID 12750511. S2CID 20591673.
- Zhang H, Yang B, Pomerantz RJ, Zhang C, Arunachalam SC, Gao L (Jul 2003). "The cytidine deaminase CEM15 induces hypermutation in newly synthesized HIV-1 DNA". Nature. 424 (6944): 94–8. Bibcode:2003Natur.424...94Z. doi:10.1038/nature01707. PMC 1350966. PMID 12808465.
- Mangeat B, Turelli P, Caron G, Friedli M, Perrin L, Trono D (Jul 2003). "Broad antiretroviral defence by human APOBEC3G through lethal editing of nascent reverse transcripts". Nature. 424 (6944): 99–103. Bibcode:2003Natur.424...99M. doi:10.1038/nature01709. PMID 12808466. S2CID 4347374.