삼각 불평등 목록
List of triangle inequalities기하학에서 삼각형 불평등은 모든 삼각형 또는 특정 조건을 충족하는 모든 삼각형의 매개변수를 포함하는 불평등이다.불평등은 두 가지 다른 가치의 순서를 정해준다. 즉, "보다 작거나 같거나", "보다 크거나 같거나" 또는 "보다 크거나 같음"이다.삼각형 불평등에서 매개변수는 측면 길이, 반주기, 각도 측정, 해당 각도의 삼각함수 값, 삼각형의 면적, 측면의 중위수, 고도, 각 각도에서 반대쪽으로의 내부 각도 이등분선 길이, 측면의 수직 이등분선,임의 지점으로부터 다른 지점까지의 거리, 인라디우스, 엑스트라디우스, 곡예 및/또는 기타 수량.
달리 명시되지 않는 한 이 글은 유클리드 평면의 삼각형을 다루고 있다.
주 파라미터 및 표기법
삼각형 불평등에서 가장 일반적으로 나타나는 매개변수는 다음과 같다.
- 측면 길이 a, b 및 c;
- 반퍼미터 s = (a + b + c) / 2 (둘레 p의 절반);
- 각도는 (각도와 동일한 기호로 표시된 정점을 사용하여) a, b 및 c의 각도를 측정한다.
- 각도의 삼각함수 값
- 삼각형의 면적 T.
- 측면의 중위수 ma, mb 및 mc(각각 측면의 중간점에서 반대 정점까지의 선 세그먼트의 길이)
- 고도 ha, hb 및 hc(각각 한쪽에 수직이고 반대쪽 정점까지 도달하는 세그먼트의 길이)
- 내부 각도 이등분자 ta, tb 및 t의c 길이(각각 정점에서 반대쪽으로 분할하고 정점의 각도를 이등분하는 세그먼트)
- 측면의 수직 이등분자 pa, pb 및 pc(각각 중간점에서 한 면에 수직이고 다른 면 중 하나에 도달하는 세그먼트의 길이)
- 평면의 임의 지점 P에 끝점이 있는 선 세그먼트의 길이(예: P에서 정점 A까지의 세그먼트의 길이는 PA 또는 AP로 표시됨)
- 그 내접원의 반지름 r(, 동그라미는 삼각형에 새긴 반경, 접선하는 모든 3면),exradii ra, rb, 라머 반경(한 방접원. 접선은 다른 양측의 연장의 a, b, c는 접선 좌우의 각은 반경), 원의 외접원의 반경 R(반경은 삼각형은 지나가는 throug에 circumscribed.한 h꼭지점 3개).
측면 길이
게다가.
우리는 가지고 있다.
- [2]: p.250, #82
- [1]: 페이지 260
- [1]: 페이지 261
- [1]: 페이지 261
- [1]: 페이지 261
C 각도가 둔감한 경우(90°보다 큼)그때
C가 급성인 경우(90° 미만)그때
C가 직각일 때 평등의 중간 경우는 피타고라스 정리다.
대체적으로.[2]: p.1, #74
동등성은 이소체 삼각형의 꼭지점 각도가 180°에 근접할 때에만 한계에 접근한다.
삼각형의[3]: p. 153 중심이 삼각형의 근골 안에 있으면,
위의 모든 불평등은 a, b, c가 가장 긴 쪽이 둘레의 절반 이하인 기본 삼각 불평등을 따라야 하기 때문에 사실이지만, 다음의 관계는 모든 긍정적인 a, b, c에 대해 유지된다.[1]: p.267
a = b = c일 때만 균등하게 각 홀딩이것은 비등변수의 경우 변의 조화 평균이 기하 평균보다 작으며, 이는 다시 산술 평균보다 작다고 말한다.
각도
- [1]: 286 페이지
- [2]: p.21, #836
반정위 s의 경우, 등변위만 동일하다.[2]: p.13, #608
- [4]: Thm.1
- [1]: 286 페이지
- [1]: 286 페이지
- [5]: 203 페이지
- [2]: p.p.c., #3297
여기서 = + 5 , 2}}:
- [1]: 286 페이지
- [1]: 286 페이지
- [2]: p.p.201, #309.2
할라디우스 R과 인라디우스 r에 대해 우리는 가지고 있다.
삼각형이 60°[7]: Cor. 3 보다 크거나 같은 정점 각도의 등각인 경우에만 동등하게,그리고
삼각형이 60°[7]: Cor. 3 보다 작거나 같은 정점 각도를 가진 등각인 경우에만 동등하게.
우리는 또한 가지고 있다.
또한 각 B, C도 마찬가지로, 삼각형이 이등변이고 정점각이 60° 이하인 경우 첫 번째 부분에서 동등하고, 정점각이 60° 이하인 경우만 두 번째 부분에서 동등하다.[7]: Prop. 5
또한, a와 b의 반대편에 있는 임의의 두 각도 측정치 A와 B는 다음과[1]: p. 264 같이 관련된다.
이등변 삼각형 정리 및 그 반대방향과 관련이 있으며, A = B인 경우에만 이등변 삼각형 정리라고 명시되어 있다.
유클리드 외부 각도 정리에 의해 삼각형의 외부 각도는 정반대 정점에 있는 내부 각도 중 하나보다 크다.[1]: p. 261
점 D가 삼각형 ABC 내부에 있으면
- [1]: 263 페이지
급성[2]: p.26, #954 삼각형은
역불평등이 둔부 삼각형을 유지하며
게다가, 사용하지 않는 삼각형의 경우, 우리는[8]: Corollary 3
하이포텐use AC가 있는 직각 삼각형일 경우에만 동등하게.
면적
웨이젠보크의 불평등은, 영역 T에 있어서는,[1]: p. 290
등변형 케이스에서만 동등하게이것은 하드와이거-핀슬러 불평등의 골격이다.
또,
- [9]: 페이지 138
그리고[2]: p.192, #340.3 [5]: p. 204
T의 가장 오른쪽 상단에서 산술-기하계 평균 불평등을 사용하여 삼각형에 대한 등거리 불평등을 구한다.
- [5]: 203 페이지
반퍼미터 단위의이것은 때때로 주변 p의 관점에서 다음과 같이 명시된다.
등변 삼각형과 [10]동등하게이것은 에 의해 강화된다.
보네센의 불평등은 또한 등측 불평등을 강화한다.
우리는 또한 가지고 있다.
등변형 케이스에서만 동등하게,
- [2]: p.p.207, #2807
반퍼미터 단위 및
- [2]: p.88, #2188
급성 삼각형에 대한 오노의 불평등(모든 각도가 90° 미만인 삼각형)이다
삼각형의 넓이는 근방의 넓이와 비교할 수 있다.
등변 삼각형에 대해서만 동등하게.[11]
내부 삼각형이 기준 삼각형의 둘레를 동일한 길이 세그먼트로 분할하도록 기준 삼각형에 새겨진 경우, 해당 영역의 비율은 다음과 같다[9]: p. 138 .
A, B, C의 내부 각도 이등분자는 D, E, F에서 반대쪽을 만나도록 한다.그러면[2]: p.18, #762
삼각형의 중앙선을 통과하는 선은 원래 삼각형의 면적 대비 작은 하위 영역의 비율이 최소한 4/9가 되도록 면적을 분할한다.[12]
중위수와 중심
삼각형의 세 중위수 m m 는 각각 정점과 반대편의 중간점을 연결하며, 길이의 합은 만족한다[1]: p. 271 .
게다가[2]: p.12, #589
등변형 케이스에서만 동등하게, 그리고 인라디우스 r의 경우,[2]: p.22, #846
만약a 우리가 M , Mb , M , 그리고 M으로c 원곡선과 교차점까지 확장된 중위들의 길이를 더 나타낸다면, 그러면[2]: p.16, #689 .
중심 G는 중위수의 교차점이다.AG, BG, CG가 각각 U, V, W에서 원주를 만나도록 한다.그럼[2]: p.17#723 둘 다
그리고
게다가[2]: p.156, #S56
급성[2]: p.26, #954 삼각형은
in terms of the circumradius R, while the opposite inequality holds for an obtuse triangle.
Denoting as IA, IB, IC the distances of the incenter from the vertices, the following holds:[2]: p.192, #339.3
The three medians of any triangle can form the sides of another triangle:[13]: p. 592
Furthermore,[14]: Coro. 6
Altitudes
The altitudes ha , etc. each connect a vertex to the opposite side and are perpendicular to that side. They satisfy both[1]: p. 274
and
In addition, if then[2]: 222, #67
We also have[2]: p.140, #3150
For internal angle bisectors ta, tb, tc from vertices A, B, C and circumcenter R and incenter r, we have[2]: p.125, #3005
The reciprocals of the altitudes of any triangle can themselves form a triangle:[15]
Internal angle bisectors and incenter
The internal angle bisectors are segments in the interior of the triangle reaching from one vertex to the opposite side and bisecting the vertex angle into two equal angles. The angle bisectors ta etc. satisfy
in terms of the sides, and
in terms of the altitudes and medians, and likewise for tb and tc .[1]: pp. 271–3 Further,[2]: p.224, #132
in terms of the medians, and[2]: p.125, #3005
in terms of the altitudes, inradius r and circumradius R.
Let Ta , Tb , and Tc be the lengths of the angle bisectors extended to the circumcircle. Then[2]: p.11, #535
with equality only in the equilateral case, and[2]: p.14, #628
for circumradius R and inradius r, again with equality only in the equilateral case. In addition,.[2]: p.20, #795
For incenter I (the intersection of the internal angle bisectors),[2]: p.127, #3033
For midpoints L, M, N of the sides,[2]: p.152, #J53
For incenter I, centroid G, circumcenter O, nine-point center N, and orthocenter H, we have for non-equilateral triangles the distance inequalities[16]: p.232
and
and we have the angle inequality[16]: p.233
In addition,[16]: p.233, Lemma 3
where v is the longest median.
Three triangles with vertex at the incenter, OIH, GIH, and OGI, are obtuse:[16]: p.232
- > > 90° , > 90°.
Since these triangles have the indicated obtuse angles, we have
and in fact the second of these is equivalent to a result stronger than the first, shown by Euler:[17][18]
The larger of two angles of a triangle has the shorter internal angle bisector:[19]: p.72, #114
Perpendicular bisectors of sides
These inequalities deal with the lengths pa etc. of the triangle-interior portions of the perpendicular bisectors of sides of the triangle. Denoting the sides so that we have[20]
and
Segments from an arbitrary point
Interior point
Consider any point P in the interior of the triangle, with the triangle's vertices denoted A, B, and C and with the lengths of line segments denoted PA etc. We have[1]: pp. 275–7
and more strongly than the second of these inequalities is:[1]: p. 278 If is the shortest side of the triangle, then
We also have Ptolemy's inequality[2]: p.19, #770
for interior point P and likewise for cyclic permutations of the vertices.
If we draw perpendiculars from interior point P to the sides of the triangle, intersecting the sides at D, E, and F, we have[1]: p. 278
Further, the Erdős–Mordell inequality states that[21] [22]
with equality in the equilateral case. More strongly, Barrow's inequality states that if the interior bisectors of the angles at interior point P (namely, of ∠APB, ∠BPC, and ∠CPA) intersect the triangle's sides at U, V, and W, then[23]
Also stronger than the Erdős–Mordell inequality is the following:[24] Let D, E, F be the orthogonal projections of P onto BC, CA, AB respectively, and H, K, L be the orthogonal projections of P onto the tangents to the triangle's circumcircle at A, B, C respectively. Then
With orthogonal projections H, K, L from P onto the tangents to the triangle's circumcircle at A, B, C respectively, we have[25]
where R is the circumradius.
Again with distances PD, PE, PF of the interior point P from the sides we have these three inequalities:[2]: p.29, #1045
For interior point P with distances PA, PB, PC from the vertices and with triangle area T,[2]: p.37, #1159
and[2]: p.26, #965
For an interior point P, centroid G, midpoints L, M, N of the sides, and semiperimeter s,[2]: p.140, #3164 [2]: p.130, #3052
Moreover, for positive numbers k1, k2, k3, and t with t less than or equal to 1:[26]: Thm.1
while for t > 1 we have[26]: Thm.2
Interior or exterior point
There are various inequalities for an arbitrary interior or exterior point in the plane in terms of the radius r of the triangle's inscribed circle. For example,[27]: p. 109
Others include:[28]: pp. 180–1
for k = 0, 1, ..., 6;
and
for k = 0, 1, ..., 9.
Furthermore, for circumradius R,
- [29]: p. 227
- [29]: p. 233
- [29]: p. 233
- [29]: p. 233
Let ABC be a triangle, let G be its centroid, and let D, E, and F be the midpoints of BC, CA, and AB, respectively. For any point P in the plane of ABC:
Inradius, exradii, and circumradius
Inradius and circumradius
The Euler inequality for the circumradius R and the inradius r states that
with equality only in the equilateral case.[31]: p. 198
A stronger version[5]: p. 198 is
By comparison,[2]: p.183, #276.2
where the right side could be positive or negative.
Two other refinements of Euler's inequality are[2]: p.134, #3087
and
Another symmetric inequality is[2]: p.125, #3004
Moreover,
- [1]: 288
in terms of the semiperimeter s;[2]: p.20, #816
in terms of the area T;[5]: p. 201
- [5]: p. 201
and
- [2]: p.17#708
in terms of the semiperimeter s; and
also in terms of the semiperimeter.[5]: p. 206 [7]: p. 99 Here the expression where d is the distance between the incenter and the circumcenter. In the latter double inequality, the first part holds with equality if and only if the triangle is isosceles with an apex angle of at least 60°, and the last part holds with equality if and only if the triangle is isosceles with an apex angle of at most 60°. Thus both are equalities if and only if the triangle is equilateral.[7]: Thm. 1
We also have for any side a[32]
where if the circumcenter is on or outside of the incircle and if the circumcenter is inside the incircle. The circumcenter is inside the incircle if and only if[32]
Further,
- [1]: p. 291
Blundon's inequality states that[5]: p. 206, [33][34]
We also have, for all acute triangles,[35]
For incircle center I, let AI, BI, and CI extend beyond I to intersect the circumcircle at D, E, and F respectively. Then[2]: p.14, #644
In terms of the vertex angles we have [2]: p.193, #342.6
Denote as the tanradii of the triangle. Then[36]: Thm. 4
with equality only in the equilateral case, and [37]
with equality only in the equilateral case.
Circumradius and other lengths
For the circumradius R we have[2]: p.101, #2625
and[2] : p.35, #1130
We also have[1]: pp. 287–90
in terms of the altitudes,
in terms of the medians, and[2]: p.26, #957
in terms of the area.
Moreover, for circumcenter O, let lines AO, BO, and CO intersect the opposite sides BC, CA, and AB at U, V, and W respectively. Then[2]: p.17, #718
For an acute triangle the distance between the circumcenter O and the orthocenter H satisfies[2]: p.26, #954
with the opposite inequality holding for an obtuse triangle.
The circumradius is at least twice the distance between the first and second Brocard points B1 and B2:[38]
Inradius, exradii, and other lengths
For the inradius r we have[1]: pp. 289–90
in terms of the altitudes, and
in terms of the radii of the excircles. We additionally have
- [2]: p.66, #1678
and
- [2]: p.183, #281.2
The exradii and medians are related by[2]: p.66, #1680
In addition, for an acute triangle the distance between the incircle center I and orthocenter H satisfies[2]: p.26, #954
with the reverse inequality for an obtuse triangle.
Also, an acute triangle satisfies[2]: p.26, #954
in terms of the circumradius R, again with the reverse inequality holding for an obtuse triangle.
If the internal angle bisectors of angles A, B, C meet the opposite sides at U, V, W then[2]: p.215, 32nd IMO, #1
If the internal angle bisectors through incenter I extend to meet the circumcircle at X, Y and Z then [2]: p.181, #264.4
for circumradius R, and[2]: p.181, #264.4 [2]: p.45, #1282
If the incircle is tangent to the sides at D, E, F, then[2]: p.115, #2875
for semiperimeter s.
Inscribed figures
Inscribed hexagon
If a tangential hexagon is formed by drawing three segments tangent to a triangle's incircle and parallel to a side, so that the hexagon is inscribed in the triangle with its other three sides coinciding with parts of the triangle's sides, then[2]: p.42, #1245
Inscribed triangle
If three points D, E, F on the respective sides AB, BC, and CA of a reference triangle ABC are the vertices of an inscribed triangle, which thereby partitions the reference triangle into four triangles, then the area of the inscribed triangle is greater than the area of at least one of the other interior triangles, unless the vertices of the inscribed triangle are at the midpoints of the sides of the reference triangle (in which case the inscribed triangle is the medial triangle and all four interior triangles have equal areas):[9]: p.137
Inscribed squares
An acute triangle has three inscribed squares, each with one side coinciding with part of a side of the triangle and with the square's other two vertices on the remaining two sides of the triangle. (A right triangle has only two distinct inscribed squares.) If one of these squares has side length xa and another has side length xb with xa < xb, then[39]: p. 115
Moreover, for any square inscribed in any triangle we have[2]: p.18, #729 [39]
Euler line
A triangle's Euler line goes through its orthocenter, its circumcenter, and its centroid, but does not go through its incenter unless the triangle is isosceles.[16]: p.231 For all non-isosceles triangles, the distance d from the incenter to the Euler line satisfies the following inequalities in terms of the triangle's longest median v, its longest side u, and its semiperimeter s:[16]: p. 234, Propos.5
For all of these ratios, the upper bound of 1/3 is the tightest possible.[16]: p.235, Thm.6
Right triangle
In right triangles the legs a and b and the hypotenuse c obey the following, with equality only in the isosceles case:[1]: p. 280
In terms of the inradius, the hypotenuse obeys[1]: p. 281
and in terms of the altitude from the hypotenuse the legs obey[1]: p. 282
Isosceles triangle
If the two equal sides of an isosceles triangle have length a and the other side has length c, then the internal angle bisector t from one of the two equal-angled vertices satisfies[2]: p.169, #44
Equilateral triangle
For any point P in the plane of an equilateral triangle ABC, the distances of P from the vertices, PA, PB, and PC, are such that, unless P is on the triangle's circumcircle, they obey the basic triangle inequality and thus can themselves form the sides of a triangle:[1]: p. 279
However, when P is on the circumcircle the sum of the distances from P to the nearest two vertices exactly equals the distance to the farthest vertex.
A triangle is equilateral if and only if, for every point P in the plane, with distances PD, PE, and PF to the triangle's sides and distances PA, PB, and PC to its vertices,[2]: p.178, #235.4
Two triangles
Pedoe's inequality for two triangles, one with sides a, b, and c and area T, and the other with sides d, e, and f and area S, states that
with equality if and only if the two triangles are similar.
The hinge theorem or open-mouth theorem states that if two sides of one triangle are congruent to two sides of another triangle, and the included angle of the first is larger than the included angle of the second, then the third side of the first triangle is longer than the third side of the second triangle. That is, in triangles ABC and DEF with sides a, b, c, and d, e, f respectively (with a opposite A etc.), if a = d and b = e and angle C > angle F, then
The converse also holds: if c > f, then C > F.
The angles in any two triangles ABC and DEF are related in terms of the cotangent function according to[6]
Non-Euclidean triangles
In a triangle on the surface of a sphere, as well as in elliptic geometry,
This inequality is reversed for hyperbolic triangles.
See also
- List of inequalities
- List of triangle topics
- Quadrilateral § Inequalities
- Quadrilateral § Maximum and minimum properties
References
- ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad Posamentier, Alfred S. and Lehmann, Ingmar. The Secrets of Triangles, Prometheus Books, 2012.
- ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd be bf bg bh Inequalities proposed in “Crux Mathematicorum” and elsewhere", [1].
- ^ Nyugen, Minh Ha, and Dergiades, Nikolaos. "Garfunkel's Inequality", Forum Geometricorum 4, 2004, 153–156. http://forumgeom.fau.edu/FG2004volume4/FG200419index.html
- ^ Lu, Zhiqin. "An optimal inequality", Mathematical Gazette 91, November 2007, 521–523.
- ^ a b c d e f g h Svrtan, Dragutin and Veljan, Darko. "Non-Euclidean versions of some classical triangle inequalities", Forum Geometricorum 12, 2012, 197–209. http://forumgeom.fau.edu/FG2012volume12/FG201217index.html
- ^ a b Scott, J. A., "A cotangent inequality for two triangles", Mathematical Gazette 89, November 2005, 473–474.
- ^ a b c d e Birsan, Temistocle (2015). "Bounds for elements of a triangle expressed by R, r, and s" (PDF). Forum Geometricorum. 15: 99–103.
- ^ Shattuck, Mark. “A Geometric Inequality for Cyclic Quadrilaterals”, Forum Geometricorum 18, 2018, 141-154. http://forumgeom.fau.edu/FG2018volume18/FG201822.pdf
- ^ a b c d Torrejon, Ricardo M. "On an Erdos inscribed triangle inequality", Forum Geometricorum 5, 2005, 137–141. http://forumgeom.fau.edu/FG2005volume5/FG200519index.html
- ^ Chakerian, G. D. "A Distorted View of Geometry." Ch. 7 in Mathematical Plums (R. Honsberger, editor). Washington, DC: Mathematical Association of America, 1979: 147.
- ^ Minda, D., and Phelps, S., "Triangles, ellipses, and cubic polynomials", American Mathematical Monthly 115, October 2008, 679–689: Theorem 4.1.
- ^ Henry Bottomley, “Medians and Area Bisectors of a Triangle” http://www.se16.info/js/halfarea.htm
- ^ Benyi, A ́rpad, and C ́́urgus, Branko. "Ceva's triangle inequalities", Mathematical Inequalities & Applications 17 (2), 2014, 591-609.
- ^ Michel Bataille, “Constructing a Triangle from Two Vertices and the Symmedian Point”, Forum Geometricorum 18 (2018), 129--133.
- ^ Mitchell, Douglas W., "A Heron-type formula for the reciprocal area of a triangle", Mathematical Gazette 89 (November 2005), 494.
- ^ a b c d e f g Franzsen, William N.. "The distance from the incenter to the Euler line", Forum Geometricorum 11 (2011): 231–236.
- ^ L. Euler, "Solutio facilis problematum quorundam geometricorum difficillimorum", Novi Comm. Acad. Scie. Petropolitanae 11 (1765); reprinted in Opera Omnia, serie prima, vol. 26 (A. Speiser, ed.), n. 325, 139–157.
- ^ Stern, Joseph (2007). "Euler's triangle determination problem". Forum Geometricorum. 7: 1–9.
- ^ Altshiller-Court, Nathan. College Geometry. Dover Publications, 2007.
- ^ Mitchell, Douglas W. "Perpendicular bisectors of triangle sides", Forum Geometricorum 13, 2013, 53–59: Theorem 4. http://forumgeom.fau.edu/FG2013volume13/FG201307index.html
- ^ Alsina, Claudi; Nelsen, Roger B. (2007), "A visual proof of the Erdős–Mordell inequality", Forum Geometricorum, 7: 99–102. http://forumgeom.fau.edu/FG2007volume7/FG200711index.html
- ^ Bankoff, Leon (1958), "An elementary proof of the Erdős–Mordell theorem", American Mathematical Monthly, 65 (7): 521, doi:10.2307/2308580, JSTOR 2308580.
- ^ Mordell, L. J. (1962), "On geometric problems of Erdös and Oppenheim", Mathematical Gazette, 46 (357): 213–215, doi:10.2307/3614019, JSTOR 3614019.
- ^ Dao Thanh Oai, Nguyen Tien Dung, and Pham Ngoc Mai, "A strengthened version of the Erdős-Mordell inequality", Forum Geometricorum 16 (2016), pp. 317--321, Theorem 2 http://forumgeom.fau.edu/FG2016volume16/FG201638.pdf
- ^ Dan S ̧tefan Marinescu and Mihai Monea, "About a Strengthened Version of the Erdo ̋s-Mordell Inequality", Forum Geometricorum Volume 17 (2017), pp. 197–202, Corollary 7. http://forumgeom.fau.edu/FG2017volume17/FG201723.pdf
- ^ a b Janous, Walther. "Further inequalities of Erdos–Mordell type", Forum Geometricorum 4, 2004, 203–206. http://forumgeom.fau.edu/FG2004volume4/FG200423index.html
- ^ Sandor, Jozsef. "On the geometry of equilateral triangles", Forum Geometricorum 5, 2005, 107–117. http://forumgeom.fau.edu/FG2005volume5/FG200514index.html
- ^ Mansour, Toufik, and Shattuck, Mark. "On a certain cubic geometric inequality", Forum Geometricorum 11, 2011, 175–181. http://forumgeom.fau.edu/FG2011volume11/FG201118index.html
- ^ a b c d Mansour, Toufik and Shattuck, Mark. "Improving upon a geometric inequality of third order", Forum Geometricorum 12, 2012, 227–235. http://forumgeom.fau.edu/FG2012volume12/FG201221index.html
- ^ Dao Thanh Oai, Problem 12015, The American Mathematical Monthly, Vol.125, January 2018
- ^ Dragutin Svrtan and Darko Veljan, "Non-Euclidean versions of some classical triangle inequalities", Forum Geometricorum 12 (2012), 197–209. http://forumgeom.fau.edu/FG2012volume12/FG201217index.html
- ^ a b Yurii, N. Maltsev and Anna S. Kuzmina, "An improvement of Birsan's inequalities for the sides of a triangle", Forum Geometricorum 16, 2016, pp. 81−84.
- ^ Blundon, W. J. (1965). "Inequalities associated with the triangle". Canad. Math. Bull. 8 (5): 615–626. doi:10.4153/cmb-1965-044-9.
- ^ Dorin Andrica, Cătălin Barbu. "A Geometric Proof of Blundon’s Inequalities", Mathematical Inequalities & Applications, Volume 15, Number 2 (2012), 361–370. http://mia.ele-math.com/15-30/A-geometric-proof-of-Blundon-s-inequalities
- ^ Bencze, Mihály; Drǎgan, Marius (2018). "The Blundon Theorem in an Acute Triangle and Some Consequences" (PDF). Forum Geometricorum. 18: 185–194.
- ^ Andrica, Dorin; Marinescu, Dan Ştefan (2017). "New Interpolation Inequalities to Euler's R ≥ 2r" (PDF). Forum Geometricorum. 17: 149–156.
- ^ Lukarevski, Martin: "An inequality for the tanradii of a triangle", Math. Gaz. 104 (November 2020) pp. 539-542. doi: 10.1017/mag.2020.115
- ^ Scott, J. A. "Some examples of the use of areal coordinates in triangle geometry", Mathematical Gazette 83, November 1999, 472–477.
- ^ a b Oxman, Victor, and Stupel, Moshe. "Why are the side lengths of the squares inscribed in a triangle so close to each other?" Forum Geometricorum 13, 2013, 113–115. http://forumgeom.fau.edu/FG2013volume13/FG201311index.html