네거티브 저항
Negative resistance전자제품에서 부저항(NR)은 일부 전기회로 및 장치의 특성으로, 장치의 단자 전체에 걸쳐 전압이 증가하면 이를 통해 [4][5]전류가 감소합니다.
이는 인가 전압이 증가하면 옴의 법칙으로 인해 전류가 비례적으로 증가하여 양의 [6]저항이 발생하는 일반 저항과는 대조적입니다.양의 저항은 통과하는 전류에서 전력을 소비하지만 음의 저항은 [7][8]전력을 생산합니다.특정 상황에서는 전기 신호의 전력을 증가시켜 [3][9][10]증폭시킬 수 있습니다.
부저항은 소수의 비선형 전자 구성 요소에서 발생하는 드문 특성입니다.비선형 장치에서는 '정적' 또는 '절대 저항', v에 대한 전압 비율(\v/ 및 전류 v에 대한 전압 변화의 비율(\ \ vi의 두 가지 유형의 저항을 정의할 수 있습니다.용어는 부정적인 저항, Δ v/Δ 나는 <일반에는 직류 전원으로 변환하는 amplify,[3][11] 수 있0{\displaystyle\Delta v/\Delta i<0}., 부정적인 미분 저항은 이단자 구성 요소는 단말기로 AC출력 전력에 대한 교류 신호 같은 지원을 증대시키는 데 지원 부정적인 미분 저항(NDR)을 의미한다.단말기.[7][12]전자 발진기 [13]및 증폭기, 특히 마이크로파 주파수에서 사용됩니다.대부분의 마이크로파 에너지는 음의 차동 저항 [14]장치로 생산됩니다.또, 이력이나[15] 쌍안정성이 있는 경우도 있기 때문에, 스위칭 회로나 메모리 [16]회로에 사용됩니다.음의 차동저항이 있는 장치의 예로는 터널 다이오드, 건 다이오드, 네온 램프, 형광등과 같은 가스 방전관이 있습니다.또, 정피드백의 트랜지스터나 op암페어등의 증폭장치를 포함한 회로는, 부차동저항을 가질 수 있다.발진기 및 활성 필터에 사용됩니다.
부저항 소자는 비선형이기 때문에 전기 회로에서 일반적으로 발생하는 양의 "오믹" 저항보다 더 복잡한 동작을 합니다.대부분의 양의 저항과 달리, 음의 저항은 장치에 인가되는 전압 또는 전류에 따라 다르며, 음의 저항 장치는 전압 또는 전류 [10][17]범위의 제한된 부분에 대해서만 음의 저항을 가질 수 있습니다.따라서 양의 저항과 유사한 실제 "음성 저항"은 없습니다. 이 저항은 임의로 넓은 범위의 전류에 걸쳐 일정한 음의 저항을 가집니다.
정의들
전기 장치 또는 회로의 두 단자 간 저항은 전류-전압(I-V) 곡선(특성 곡선)에 의해 결정되며, 이 곡선([18]특징 곡선)을 통해 주어진 vv}에 대해 전류 i를 제공합니다.전기 회로에서 발생하는 일반(양) 저항을 포함한 대부분의 재료는 옴의 법칙을 따릅니다. 이를 통과하는 전류는 광범위한 [6]전압에 비례합니다.따라서 오믹 저항의 I-V 곡선은 원점을 통과하는 직선으로 양의 기울기를 가집니다.저항은 전압 대 전류의 비율이며 라인의 역경사(I-V 그래프에서 v v가 독립 변수임)이며 상수입니다.
소수의 비선형([19]비오믹) 장치에서 음의 저항이 발생합니다.비선형 성분에서 I-V 곡선은 [6][20]직선이 아니므로 옴의 [19]법칙을 따르지 않습니다.저항을 정의할 수는 있지만 저항이 일정하지는 않습니다. 저항은 [3][19]장치를 통과하는 전압 또는 전류에 따라 달라집니다.이러한 비선형 장치의 저항은 두 [20][21][22]가지 방법으로 정의할 수 있으며, 이는 옴 [23]저항과 동일합니다.
- 정적 저항(현상 저항, 절대 저항 또는 저스트 저항이라고도 함) – 일반적으로 사용되는 저항의 정의는 다음과 같습니다. 전압을 [3][18][23]전류로 나눈 값입니다. 원점에서 I-V [6]곡선의 점을 통과하는 선(차드)의 역경사입니다.전원에서 배터리 또는 전기 발생기 같은 긍정적인 전압 terminal,[26]저항기에서 전류의 흐름에 반대에서 나는 그리고 v{\displaystyle v}반대 증세가 있{\displaystyle 나는}이 수동적 부호 규약와는 아주, 긍정적인 전류의 흐름은,, 의 또는 42사분면에 누워 있는 포인트를 나타내는입니다. I–V평면(오른쪽)따라서 전원에는 정식으로 마이너스 스태틱 저항(static <이 있습니다.} 그러나[23][27][28] "저항"[29][30][31]이라는 용어는 수동 부품에만 적용되기 때문에 실제로는 이 용어가 사용되지 않습니다정적 저항은 [25][30]컴포넌트의 전력 소모를 결정합니다.전력을 소비하는 패시브 디바이스는 정전기저항이 정의되지만 전력을 생산하는 액티브 디바이스는 정전기저항이 없습니다.[23][27][32]
- 차동 저항(동적 [3][22]또는[6] 증분 저항이라고도 함) – 이는 전류에 대한 전압의 미분입니다. [9]전류 변화에 대한 전압의 작은 변화 비율, 한 지점에서 I-V 곡선의 역경사:차동 저항은 시간 가변 [9]전류에만 관련이 있습니다.곡선의 기울기가 음(오른쪽으로 내려감)인 점, 즉 전압의 증가로 전류가 감소하면 차동저항이 음(diff < \ r _ { \ { } <[3][9][20])이 됩니다.이러한 유형의 장치는 신호를 [3][11][13]증폭할 수 있으며, 일반적으로 "부정 저항"[3][20]이라는 용어로 사용됩니다.
음의 저항은 양의 저항과 마찬가지로 옴 단위로 측정됩니다.
컨덕턴스는 [33][34]저항의 역수이다.지멘스(이전의 mho)[33] 단위로 측정되며, 이는 저항이 1옴인 저항의 전도율입니다.위에서 정의한 각 저항 유형에는 해당하는[34] 컨덕턴스가 있습니다.
- 정적 컨덕턴스
- 차동 컨덕턴스
컨덕턴스는 해당 저항과 동일한 부호를 가지고 있음을 알 수 있습니다. 즉, 음의 저항은 음의[note 1] 컨덕턴스를 갖는 반면 양의 저항은 양의 [28][34]컨덕턴스를 갖는 것입니다.
작동
다른 유형의 저항을 구별할 수 있는 한 가지 방법은 회로와 전자 구성 요소 사이의 전류 및 전력 방향입니다.다음 그림은 회로에 접속되어 있는 컴포넌트를 나타내는 직사각형을 나타내고 있습니다.
전기 구성 요소의 전압 v 및 전류 i 변수는 패시브 신호 규칙에 따라 정의해야 합니다. 양의 재래식 전류는 양의 전압 단자에 들어가도록 정의됩니다. 즉, 회로에서 구성 요소로 흐르는 전력 P는 양의 전력으로 정의되는 반면 구성 요소에서 회로로 흐르는 전력은 양의 전력으로 정의됩니다.음성이에요.[25][31]이는 DC 전류와 AC 전류 모두에 적용됩니다.이 다이어그램은 변수의 양수 값에 대한 방향을 보여 줍니다. | ![]() |
의 정적 저항에서는 R static / > { }\;=\;v0}이므로와 i의 [24]부호는 같습니다.따라서 상기의 패시브 부호 규약에 따르면, 종래의 전류(정전하의 흐름)는 전기장 E(전위 [25]저하) 방향으로 양극에서 음극 단자로 흐른다. > {\ P으로 인해 전하가 디바이스에서 작업하면서 전위에너지가 손실되고, 전원은 회로에서 디바이스로 흐르며,[24][29] 여기서 열 또는 기타 형태의 에너지(노란색)로 변환됩니다.AC 전압이 인가되면 v v ii는 으로 역방향이지만 ii는 항상 높은 전위에서 낮은 전위로 흐릅니다. | ![]() |
에서 static / < { R _ { \ { } / \ ;[23]와 i의는 서로 반대입니다.즉, 전류가 음극 단자에서 양극 [23]단자로 흐르게 됩니다.전하가 전위에너지를 얻으므로, P < { P 의 힘에 반하여 이 방향으로 이동하려면 장치의 일부 전원에 의한 전하 작업(노란색)을 수행해야 합니다. | ![]() |
수동형 음차 저항인 diff / i < { r _ { \ { } = \ v / \ i \ ; < \ ; 는 전류의 AC 성분만 역방향으로 흐릅니다.정적 저항은 양수이므로[6][9][21] 전류가 에서 음수로 > 0 { P 그러나 전압이 증가할수록 전류(전하 흐름 속도)가 감소합니다.따라서 DC 전압(오른쪽)과 함께 AC 전압이 인가되면 시간 지연 전류 i(\i) 및 전압 v v 구성요소는 서로 반대 부호를 P AC = i < {text v i[37]즉, 순간 AC 전류 ii는 AC 전압 v v의 상승 방향으로 디바이스를 통과하여 AC 전원이 디바이스에서 회로로 흐르도록 합니다.디바이스는 DC 전원을 소비합니다.이 중 일부는 AC 신호 전력으로 변환되어 외부 [7][37]회로의 부하에 공급될 수 있으므로 디바이스는 [11]DC 전력을 증폭할 수 있습니다. | ![]() |
유형 및 용어
rdiff > 0 양극 차동 저항 | rdiff < 0 부차동 저항 | |
---|---|---|
Rstatic > 0 수동: 소비하다 순전력 | 양의 저항:
| 패시브 부차동 저항:
|
Rstatic < 0 액티브: 생산하다 순전력 | 전원:
| "액티브 저항기" 양의 피드백 증폭기는 다음 용도로 사용됩니다.
|
전자장치에서 R 또는 둘 다 [24]음이 될 수 있으므로 "부정저항"이라고 할 수 있는 세 가지 범주의 디바이스가 있다(위의 그림 2-4).
용어는 거의 항상 의미한다;0{\displaystyle r_{\text{연락}}<0}일 경우 독특한 능력이 부정적인 미분 저항 장치 .[3][17][20]:그들은one-port로time-varying 신호 항구(그녀에 적용된 의력을 높여 주는 amplifiers,[3][11][13][38]활동할 수도 있는 부정적인 미분 저항 rdiff<>"부정적인 저항".minals거나 그렇게 진동발진기를 [37][38][39]만들도록 조정된 회로입니다.그들은 또한 히스테리시스를 [15][16]가질 수 있다.전원이 [40]없는 디바이스는 음의 차동 저항을 가질 수 없습니다.이러한 디바이스는, 내부 전원으로부터 전력을 공급받는지,[16][37][39][41][42] 포토로부터 전력을 공급받는지에 따라, 다음의 2개의 카테고리로 나눌 수 있습니다.
- 수동형 음극 디퍼렌셜 저항 장치(위 그림 2):이들은 가장 잘 알려진 유형의 "음성 저항"으로, 고유 I-V 곡선이 하향 "킹크"를 가지며 제한된 [41][42]범위에서 전압이 증가하면 전류가 감소합니다.음의 저항 영역을 포함한 I-V 곡선은 평면의[15] 1사분면과 3사분면에 위치하기 때문에 디바이스는 양의 정적 [21]저항을 가집니다.예를 들어 가스 방전관, 터널 다이오드 [43]및 건 다이오드가 있습니다.이러한 디바이스에는 내부 전원이 없고, 일반적으로 포토의 외부 DC 전력을 시간 가변([7]AC) 전력으로 변환하는 것으로 동작하고 있기 때문에,[37][39] 신호와 함께 포토에 DC 바이어스 전류를 인가할 필요가 있습니다.혼란을 가중시키기 위해 일부 저자는[17][43][39] 이러한 장치를 증폭시킬 수 있기 때문에 "액티브" 장치라고 부릅니다.이 카테고리에는 유니접속 트랜지스터와 [43]같은 몇 개의 3단자 디바이스도 포함됩니다.아래의 네거티브 디퍼렌셜 저항 섹션에서 다룹니다.
- 적극적인 부정적인 미분 저항 장치(무화과이다. 4):전기 회로에 긍정적인 전압이 단말기에 적용되는 비례"부정적인"현재 원인이 될 것;설계될 수 있는 긍정적인 터미널에서, 평범한 저항의 반대, 위의 장치, downward-sloping의 경우와는 달리 한정된 range,[3][26][44][45][46]전류.그 I–V의 지역곡선은 원점을 통과하기 때문에 평면의 2번째와 4번째 사분면에 위치하며,[24] 이는 장치가 전력을 공급한다는 것을 의미합니다.양의 피드백이 있는 트랜지스터 및 op-amp와 같은 증폭 장치는 이러한 유형의 [37][47][26][42]음 저항을 가질 수 있으며 피드백 발진기 및 활성 [42][46]필터에 사용됩니다.이러한 회로는 포트에서 순전력을 생산하기 때문에 내부 DC 전원 또는 외부 전원 [24][26][44]장치에 대한 개별 접속이 필요합니다.회로 이론에서는 이를 "능동 저항"[24][28][48][49]이라고 합니다.이러한 유형을 "수동적" 부극 저항과 구별하기 위해 "[24][50]선형", "[3]절대", "이상적" 또는 "순수" 부극[3][46] 저항이라고 부르기도 하지만, 전자 제품에서는 단순히 양의 피드백 또는 재생이라고 부릅니다.이러한 내용은 아래의 액티브 저항 섹션에서 설명합니다.
때때로 일반 전원을 "부정 저항"[20][27][32][51]이라고 한다(위의 그림 3).액티브 디바이스(전원)의 "정적" 또는 "절대" R R_은 음으로 간주할 수 있지만(아래의 음의 정적 저항 섹션 참조), 배터리, 제너레이터 및 (양의 피드백이 아닌) 증폭기 등 대부분의 일반 전원(AC 또는 DC)은 양의 차동 r을 가집니다.es(소스 저항).[52][53]따라서 이러한 디바이스는 1포트 앰프로서 기능하거나 음의 차분 저항의 다른 기능을 가질 수 없습니다.
음극 저항 장치 목록
음의 차동 저항을 갖는 전자 구성 요소에는 다음과 같은 장치가 포함됩니다.
- 터널링 메커니즘을[56] [54][43]이용한 터널링 다이오드[55], 공명 터널링 다이오드 및 기타 반도체 다이오드
- 전달된 전자 메커니즘을[56] 사용하는 건 다이오드[57] 및 기타 다이오드
- 충격 이온화 메커니즘을[56] 이용한 IMPATT 다이오드,[43][57] TRAPATT 다이오드 및 기타 다이오드
- 일부[58] NPN 트랜지스터와 E-C 역편향(네기스터)
- 유니접속 트랜지스터(UJT)[54][43]
- 사이리스터[54][43]
- 다이너트론[9][59] 모드로 작동하는 3극 및 4극 진공관
- 일부 마그네트론 튜브 및 기타 마이크로파 진공[60] 튜브
- 매저[61]
- 파라메트릭 증폭기[62]
가스를 통한 방전도 이러한 장치를 포함하여 음의 차동 [63][64]저항을 나타냅니다.
또한 [43][37][47]음의 차동 저항을 가진 능동 회로는 피드백을 사용하여 트랜지스터 및 Op Amp와 같은 증폭 장치를 사용하여 구축할 수 있습니다.최근 몇 [67]년 동안 여러 가지 실험용 부차동 저항 재료와 장치가 발견되었습니다.음의 저항을 일으키는 물리적 프로세스는 [12][56][67]다양하며, 각 유형의 디바이스는 전류-전압 [10][43]곡선으로 규정되는 고유한 음의 저항 특성을 가지고 있습니다.
음의 정적 저항 또는 "절대" 저항
혼란스러운 점은 일반 저항("정적" 또는 "절대" , R R_}}=이 [68][72]음이 될 수 있는지 여부입니다.전자제품에서 "저항"이라는 용어는 와이어, 저항기 및 다이오드와 같은 수동 재료 및 구성[30] 요소에만 적용됩니다.은 Joule의 P { p =i static { \ { } 로 나타내듯이 Rstatic < ( R _ { \ { static [29]) 。패시브 디바이스는 전력을 소비하기 때문에 패시브 부호 P 0 0 0 ≥ 0 ≥ 0 0 ge 0≥ 0≥ 0 。따라서 Joule의 R 0 0[23][27][29] 즉,[6][73] 저항이 0인 "완벽한" 도체만큼 전류를 잘 통하지 않는 물질은 없습니다.패시브 디바이스의 R static / < { R _ { \ { } / \ ;은 (는[3]) 에너지 보존 또는 열역학 제2법칙(열역학)[39][44][68][71]을 위반합니다.따라서 정적 저항은 절대 음이 될 수 없다고 말하는 저자도 있습니다[6][29][69].
그러나 전원 단자(AC 또는 DC)에서 전압 대 전류 v/i의 비율이 [27]음수임을 쉽게 알 수 있습니다.전력(전위 에너지)이 장치에서 회로로 흐르려면 전하가 장치를 통해 전위에너지가 증가하는 방향으로 흘러야 하며, 일반 전류(양전하)가 음극에서 양극 [23][36][44]단자로 이동해야 합니다.즉, 순간 전류의 방향은 양극 단자를 벗어납니다.이는 패시브 부호 규칙에 의해 정의된 패시브 장치의 전류 방향과 반대이므로 전류와 전압은 반대 부호를 가지며, 그 비율은 음수입니다.
전계에 대해 양극 단자를 향해 이동하기 위해서는 장치 내의 어떤 에너지원에 의해 전하 작업이 수행되어야 합니다.따라서 에너지 보존을 위해서는 음의 정전기저항에 [3][23][39][44]전력이 공급되어야 합니다.전력은 배터리 또는 제너레이터와 같이 다른 형태의 에너지를 전력으로 변환하는 내부 전원에서 공급되거나 트랜지스터, 진공관 또는 op amp와 같은 증폭 장치에서의 외부 전원[44] 공급 회로에 대한 별도의 연결에서 공급될 수 있습니다.
최종 수동성
회로는 무한대의 전력을 [10]생성할 수 있어야 하므로 무한대의 전압 또는 전류 범위에서 음의 정적 저항(액티브)을 가질 수 없습니다.전원이 유한한 액티브 회선 또는 디바이스는, 「결국 패시브」[49][74][75]가 됩니다.이 특성은 어느 한 극성의 충분한 양의 외부 전압 또는 전류가 인가되면 정적 저항이 양수가 되어 전력을 소비한다는[74] 것을 의미합니다.
따라서 I-V 곡선의 끝부분은 결국 방향을 바꿔 제1사분면과 [75]제3사분면에 진입합니다.따라서 음의 정적 저항을 갖는 곡선의 범위는 [10]원점 주변의 영역으로 제한됩니다.예를 들어, 제너레이터 또는 배터리(위 그래프)에 개방 회로[76] 전압보다 큰 전압을 인가하면 전류 흐름 방향이 역전되어 정전 저항이 양수이므로 전력을 소비합니다.마찬가지로 음의 임피던스 컨버터에 전원 공급s 전압 V보다 높은 전압을 인가하면 앰프가 포화 상태가 되어 저항이 양수가 됩니다.
부차동 저항
음의 차동 저항(NDR)이 있는 장치 또는 회로에서 I-V 곡선의 일부에서는 전압이 [21]증가함에 따라 전류가 감소합니다.
패시브 부차동 저항은 양의 정적 [3][6][21]저항을 가지며, 순 전력을 소비합니다.따라서 I-V 곡선은 그래프의 [15]첫 번째와 세 번째 사분면에 한정되어 원점을 통과합니다.이 요건은 (일부 점근적 경우를 제외하고) 음의 저항 영역이 [17][77]제한되어야 하며 양의 저항 영역으로 둘러싸여 있어야 하며 [3][10]원점을 포함할 수 없다는 것을 의미한다.
종류들
부차동 저항은 두 가지 [16][77]유형으로 분류할 수 있습니다.
- 전압 제어 부저항(VCNR, 단락 [77][78][note 2]안정 또는 "N" 유형):이 유형에서 전류는 전압의 단일 값 연속 함수이지만 전압은 [77]전류의 다중값 함수입니다.가장 일반적인 유형에는 음의 저항 영역이 하나뿐이며 그래프는 문자 "N"과 같은 모양의 곡선입니다. 전압이 증가하면 전류가 최대값1(i)에 도달할 때까지 증가(양의 저항)한 후 음의 저항 영역이2 최소값(i)으로 감소했다가 다시 증가합니다.이러한 유형의 부저항을 가진 장치에는 터널 다이오드,[54] 공명 터널링 [79]다이오드, 람다 다이오드, 건 [80]다이오드 및 다이너트론 [43][59]발진기가 포함됩니다.
- 전류 제어 부저항(CCNR, 개방 회로 [77][78][note 2]안정형 또는 "S" 유형):VCNR의 듀얼인 이 유형에서는 전압이 전류의 단일 값 함수이지만 전류는 [77]전압의 다중값 함수입니다.가장 일반적인 유형에서는 음의 저항 영역이 1개인 그래프는 문자 "S"와 같은 모양의 곡선입니다. 이러한 유형의 음의 저항은 IMPATT 다이오드,[80] UJT,[54] SCR 및 기타 사이리스터,[54] 전기 아크 및 가스 방전 [43]튜브를 포함합니다.
대부분의 디바이스에는 1개의 음극 저항 영역이 있습니다.다만, 복수의 개별의 네거티브 저항 영역을 가지는 디바이스도 [67][81]제조할 수 있습니다.이것들은 3개 이상의 안정된 상태를 가질 수 있으며, 다치 [67][81]로직을 구현하기 위한 디지털 회선에서의 사용에 관심이 있습니다.
다른 디바이스를 비교하는 데 사용되는 고유 파라미터는 PVR([67]Peak-to-Valley Current Ratio)로, 부저항 영역 상단의 전류 대 하단의 전류 비율입니다(위의 그래프 참조).
증폭
부차동저항디바이스는 신호가 직류전압 또는 전류로 바이어스되어 I-V곡선의 [7][12]부차동저항영역 내에 있을 경우 인가되는[11][13] AC신호를 증폭할 수 있다.
터널 다이오드 회로(그림 참조)가 [82]그 예입니다.터널 다이오드 TD에는 음의 차동 [54]저항이 제어됩니다. b {\는 다이오드에 정전압(바이어스)을 가하여 음의 저항 범위에서 작동하고 신호를 증폭할 수 있는 전력을 제공합니다.바이어스 지점의 음의 저항이 v / i - v i=-이라고 가정합니다. 안정성 R은 r{\ r[36]보다 작아야 합니다. 분압 공식을 사용하면 AC 출력 전압은 다음과[82] 같습니다.
파워 게인의 설명
이 다이어그램은 바이어스된 부차동 저항 장치가 인가되는 신호의 출력을 증가시켜 증폭시키는 방법을 보여 줍니다. 단자는 2개뿐이지만,중첩 원리로 인해 장치 단자의 전압 및 전류는 DC 바이어스 구성 요소( b i {\ V_로 나눌 수 있습니다. 및 AC 컴포넌트( 「 「 「 vi
패시브 디바이스에서 발생하는 교류전력은 입력된 직류 바이어스 [21]전류로부터 공급되며, 직류전력을 흡수하고, 그 중 일부는 장치의 비선형성에 의해 교류전력으로 변환되어 인가신호를 증폭한다.따라서 출력 전력은 바이어스[21] 전력에 의해 제한됩니다.
또한 이 장치는 리액턴스를 가질 수 있으므로 전류와 전압의 위상차가 180°에서 달라질 수 있으며 [8][42][87]주파수에 따라 달라질 수 있습니다.임피던스의 실제 컴포넌트가 음(90°~270°[84]의 위상각)인 한 디바이스는 음의 저항을 가지며 [87][88]증폭될 수 있습니다.
최대 AC 출력 전력은 음의 저항 영역 크기( [21][89]그래프에서는 v1 2 {\에 의해 제한됩니다.
반사계수
출력 신호가 입력 신호가 입력된 포트를 통해 음의 저항을 남길 수 있는 이유는 전송 라인 이론에서 구성 요소 단자의 AC 전압 또는 전류를 두 개의 반대 방향 이동 파형인 입사 I로 나눌 수 있기 때문입니다.디바이스를 향해 이동하는 I와 디바이스에서 멀어지는 [90] V 입니다.회로 내의 부차저항은 반사계수 입사파의 비율의 크기가 [17][85]1보다 클 경우 증폭될 수 있습니다.
안정성 조건
비선형이기 때문에 음의 미분저항을 가진 회로는 I-V [92]곡선에 있는 복수의 평형점(DC 동작점)을 가질 수 있습니다.평형점은 안정적이기 때문에 극이 s플레인(LHP)의 왼쪽 절반에 있는 경우 회로가 점의 어느 근처로 수렴됩니다.한 점이 불안정할 때 평형점이 [93][94]j'축 또는 오른쪽 절반 평면(RHP)에 있는 경우 회로가 발진하거나 "래치업"(다른 점으로 수렴)됩니다.반면 선형 회로에는 안정적이거나 [95][96]불안정한 단일 평형점이 있습니다.평형점은 DC 바이어스 회로에 의해 결정되며, 안정성은 외부 회로의 Z L ( )) { Z_에 의해 결정됩니다.단, 곡선의 모양이 다르기 때문에 VCNR 및 CCNR 유형의 [86][97]음저항에 따라 안정성 조건이 다릅니다.
- CCNR(S형) 음성 저항에서는 저항 style 이 단일값입니다.따라서 안정성은 회로의 임피던스 방정식인 Z ( ) + ( ) { omega)=[98][99]의 극에 의해 결정됩니다.
- VCNR(N형) 부저항에서는 컨덕턴스 / N(\ G_} / 이 단일값이다.따라서 안정성은 어드미턴스 Y + N (\의 극에 의해 결정된다.[98][99] 이 때문에 VCNR은 음의 [16][98][99]컨덕턴스라고 불리기도 합니다.위와 같이 비반응 회로의 경우 회로의 총 컨덕턴스가 양의[100] 값이어야 안정성이 확보됩니다. VCNR이 안정되어[16][97] 있는
리액턴스를 가진 일반적인 부저항 회로의 경우, 안정성은 나이키스트 안정성 [102]기준과 같은 표준 테스트에 의해 결정되어야 합니다.또는 고주파 회로 설계에서는 회로가 안정된 L 의 값(\을 Smith [17]차트상의 '안정원'을 이용한 그래피컬 기법으로 구한다.
운용 지역 및 응용 프로그램
N { R _ { N } \ ; = \ ; - r} 0 { _ { N } \ ; = \ ; }인 단순 비반응성 음극 저항 장치의 경우 장치의 다양한 작동 영역을 I-V[77] 곡선의 부하 라인으로 나타낼 수 있습니다(그래프 참조).
DCL(DCload Line)은 DC 바이어스 회로에 의해 결정되는 직선으로 방정식이 있습니다.
- VCNR에는 전압원과 같은 낮은 임피던스 바이어스( \ R \ ; } )가 필요합니다.
- CCNR에는 전류원 또는 고저항 직렬 전압원과 같은 고임피던스 바이어스(> \ R \ ; > \; )가 필요합니다.
AC 로드 라인(L1 - L3)은 Q 포인트를 통과하는 직선이며, 기울기는 장치를 향한 차동(AC) R })입니다.L을 시키면(\ 로드 라인이 시계 반대 방향으로 회전합니다.회로는 R [77]에 따라 3가지 영역 중 하나(그림 참조)에서 작동합니다).
- 안정된 영역(녹색)(L선으로1 표시):하중선이 이 영역에 있을 경우, 하중선은 한 점 [77]Q에서1 I-V 곡선과 교차합니다.비반응 회로의 경우 안정된 평형(LHP의 극)이므로 회로가 안정적입니다.이 영역에서는 음극 저항 앰프가 작동합니다.그러나 이력 때문에 캐패시터나 인덕터와 같은 에너지 저장 장치를 사용하면 회로가 불안정해져 비선형 완화 발진기(안정성 멀티비브레이터)[104] 또는 단안정 멀티비브레이터가 될 수 있습니다.
- VCNR은 L<일 때 안정적입니다.
- CCNR은 R > > 일 때 안정적입니다.
- 불안정한 점(선2 L): L {\{L}일 때 로드 라인은 I-V 곡선에 접합니다.회로의 총 차동(AC) 저항은 0(j축의 폴)이므로 불안정하고 튜닝된 회로가 있으면 발진할 수 있습니다.선형 오실레이터는 이 지점에서 작동합니다.실제 오실레이터는 실제로는 RHP의 극과 함께 아래 불안정한 영역에서 시작하지만 진폭이 증가함에 따라 진폭이 비선형적이 되고, 최종 수동성으로 인해 부저항 r이 감소하므로 r {\의 진폭에서[105] 진동이 안정됩니다.
- 쌍안정 영역(빨간색)(L선으로3 표시):이 영역에서는 하중선이 3개의 [77]점에서 I-V 곡선과 교차할 수 있습니다.중앙점(Q1)은 불안정한 평형점(RHP의 극)이며, 두 외부점(Q와23 Q)은 안정된 평형점이다.따라서 올바른 바이어스를 사용하면 회로를 쌍안정할 수 있으며, 두 지점2 중 하나Q 또는3 Q로 수렴하여 입력 펄스를 통해 회로를 전환할 수 있습니다.이 영역에서는 플립플롭(안정 멀티바이버레이터)이나 슈미트트리거 등의 스위칭회로가 동작합니다.
- VCNR은 L> { R _ { } r }일 때 안정될 수 있습니다.
- CCNR은 < \ < }일 때 쌍안정할 수 있습니다.
능동형 저항 - 피드백의 부저항
위의 고유한 음의 차동 저항을 가진 패시브 디바이스와 더불어 트랜지스터 또는 Op Amp와 같은 증폭 장치를 가진 회로는 [3][37]포트에서 음의 저항을 가질 수 있습니다.충분한 양의 피드백이 적용된 앰프의 입력 또는 출력 임피던스는 [47][38][107][108]음이 될 수 있습니다.가 피드백 없는 앰프의 입력 저항이고 (\ A가 앰프 이고 β가 피드백 경로의 전송 함수인 , 양의 션트 피드백이[3][109] 있는 입력 저항은 다음과 같습니다.
회로 이론에서는 이를 "능동 저항기"[24][28][48][49]라고 합니다.단자에 전압을 인가하면 일반 [26][45][46]저항과 반대로 양의 단자에서 비례 전류가 발생합니다.예를 들어, 배터리를 단자에 연결하면 배터리가 [44]방전되지 않고 충전됩니다.
1포트 장치로 간주되는 이러한 회로는 위의 패시브 부차동 저항 성분과 유사하게 기능하며, 이와 마찬가지로 다음과 같은 장점을 가진 1포트 증폭기 및 발진기를[3][11] 만드는 데 사용할 수 있습니다.
- 액티브 디바이스이기 때문에 전원을 공급하기 위해 외부 DC 바이어스가 필요하지 않으며 DC 커플링도 가능합니다.
- 루프 게인을 조정하여 부저항의 양을 변경할 수 있다.
- they can be linear circuit elements;[8][42][50] if operation is confined to the straight segment of the curve near the origin the voltage is proportional to the current, so they do not cause harmonic distortion.
The I–V curve can have voltage-controlled ("N" type) or current-controlled ("S" type) negative resistance, depending on whether the feedback loop is connected in "shunt" or "series".[26]
Negative reactances (below) can also be created, so feedback circuits can be used to create "active" linear circuit elements, resistors, capacitors, and inductors, with negative values.[37][46] They are widely used in active filters[42][50] because they can create transfer functions that cannot be realized with positive circuit elements.[111] Examples of circuits with this type of negative resistance are the negative impedance converter (NIC), gyrator, Deboo integrator,[50][112] frequency dependent negative resistance (FDNR),[46] and generalized immittance converter (GIC).[42][98][113]
Feedback oscillators
If an LC circuit is connected across the input of a positive feedback amplifier like that above, the negative differential input resistance can cancel the positive loss resistance inherent in the tuned circuit.[114] If this will create in effect a tuned circuit with zero AC resistance (poles on the jω axis).[39][107] Spontaneous oscillation will be excited in the tuned circuit at its resonant frequency, sustained by the power from the amplifier. This is how feedback oscillators such as Hartley or Colpitts oscillators work.[41][115] This negative resistance model is an alternate way of analyzing feedback oscillator operation.[14][36][104][108][116][117][118] All linear oscillator circuits have negative resistance[36][84][104][117] although in most feedback oscillators the tuned circuit is an integral part of the feedback network, so the circuit does not have negative resistance at all frequencies but only near the oscillation frequency.[119]
Q enhancement
A tuned circuit connected to a negative resistance which cancels some but not all of its parasitic loss resistance (so ) will not oscillate, but the negative resistance will decrease the damping in the circuit (moving its poles toward the jω axis), increasing its Q factor so it has a narrower bandwidth and more selectivity.[114][120][121][122] Q enhancement, also called regeneration, was first used in the regenerative radio receiver invented by Edwin Armstrong in 1912[107][121] and later in "Q multipliers".[123] It is widely used in active filters.[122] For example, RF integrated circuits use integrated inductors to save space, consisting of a spiral conductor fabricated on chip. These have high losses and low Q, so to create high Q tuned circuits their Q is increased by applying negative resistance.[120][122]
Chaotic circuits
Circuits which exhibit chaotic behavior can be considered quasi-periodic or nonperiodic oscillators, and like all oscillators require a negative resistance in the circuit to provide power.[124] Chua's circuit, a simple nonlinear circuit widely used as the standard example of a chaotic system, requires a nonlinear active resistor component, sometimes called Chua's diode.[124] This is usually synthesized using a negative impedance converter circuit.[124]
Negative impedance converter
A common example of an "active resistance" circuit is the negative impedance converter (NIC)[45][46][115][125] shown in the diagram. The two resistors and the op amp constitute a negative feedback non-inverting amplifier with gain of 2.[115] The output voltage of the op-amp is
Negative capacitance and inductance
By replacing in the above circuit with a capacitor () or inductor (), negative capacitances and inductances can also be synthesized.[37][46] A negative capacitance will have an I–V relation and an impedance of
There is also another way of looking at them. In a negative capacitance the current will be 180° opposite in phase to the current in a positive capacitance. Instead of leading the voltage by 90° it will lag the voltage by 90°, as in an inductor.[46] Therefore, a negative capacitance acts like an inductance in which the impedance has a reverse dependence on frequency ω; decreasing instead of increasing like a real inductance[46] Similarly a negative inductance acts like a capacitance that has an impedance which increases with frequency. Negative capacitances and inductances are "non-Foster" circuits which violate Foster's reactance theorem.[127] One application being researched is to create an active matching network which could match an antenna to a transmission line over a broad range of frequencies, rather than just a single frequency as with current networks.[128] This would allow the creation of small compact antennas that would have broad bandwidth,[128] exceeding the Chu–Harrington limit.
Oscillators

Negative differential resistance devices are widely used to make electronic oscillators.[7][43][129] In a negative resistance oscillator, a negative differential resistance device such as an IMPATT diode, Gunn diode, or microwave vacuum tube is connected across an electrical resonator such as an LC circuit, a quartz crystal, dielectric resonator or cavity resonator[117] with a DC source to bias the device into its negative resistance region and provide power.[130][131] A resonator such as an LC circuit is "almost" an oscillator; it can store oscillating electrical energy, but because all resonators have internal resistance or other losses, the oscillations are damped and decay to zero.[21][39][115] The negative resistance cancels the positive resistance of the resonator, creating in effect a lossless resonator, in which spontaneous continuous oscillations occur at the resonator's resonant frequency.[21][39]
Uses
Negative resistance oscillators are mainly used at high frequencies in the microwave range or above, since feedback oscillators function poorly at these frequencies.[14][116] Microwave diodes are used in low- to medium-power oscillators for applications such as radar speed guns, and local oscillators for satellite receivers. They are a widely used source of microwave energy, and virtually the only solid-state source of millimeter wave[132] and terahertz energy[129] Negative resistance microwave vacuum tubes such as magnetrons produce higher power outputs,[117] in such applications as radar transmitters and microwave ovens. Lower frequency relaxation oscillators can be made with UJTs and gas-discharge lamps such as neon lamps.
The negative resistance oscillator model is not limited to one-port devices like diodes but can also be applied to feedback oscillator circuits with two port devices such as transistors and tubes.[116][117][118][133] In addition, in modern high frequency oscillators, transistors are increasingly used as one-port negative resistance devices like diodes. At microwave frequencies, transistors with certain loads applied to one port can become unstable due to internal feedback and show negative resistance at the other port.[37][88][116] So high frequency transistor oscillators are designed by applying a reactive load to one port to give the transistor negative resistance, and connecting the other port across a resonator to make a negative resistance oscillator as described below.[116][118]
Gunn diode oscillator

DCL: DC load line, which sets the Q point.
SSL: negative resistance during startup while amplitude is small. Since poles are in RHP and amplitude of oscillations increases.
LSL: large-signal load line. When the current swing approaches the edges of the negative resistance region (green), the sine wave peaks are distorted ("clipped") and decreases until it equals .
The common Gunn diode oscillator (circuit diagrams)[21] illustrates how negative resistance oscillators work. The diode D has voltage controlled ("N" type) negative resistance and the voltage source biases it into its negative resistance region where its differential resistance is . The choke RFC prevents AC current from flowing through the bias source.[21] is the equivalent resistance due to damping and losses in the series tuned circuit , plus any load resistance. Analyzing the AC circuit with Kirchhoff's Voltage Law gives a differential equation for , the AC current[21]
- : (poles in left half plane) If the diode's negative resistance is less than the positive resistance of the tuned circuit, the damping is positive. Any oscillations in the circuit will lose energy as heat in the resistance and die away exponentially to zero, as in an ordinary tuned circuit.[39] So the circuit does not oscillate.
- : (poles on jω axis) If the positive and negative resistances are equal, the net resistance is zero, so the damping is zero. The diode adds just enough energy to compensate for energy lost in the tuned circuit and load, so oscillations in the circuit, once started, will continue at a constant amplitude.[39] This is the condition during steady-state operation of the oscillator.
- : (poles in right half plane) If the negative resistance is greater than the positive resistance, damping is negative, so oscillations will grow exponentially in energy and amplitude.[39] This is the condition during startup.
Practical oscillators are designed in region (3) above, with net negative resistance, to get oscillations started.[118] A widely used rule of thumb is to make .[17][134] When the power is turned on, electrical noise in the circuit provides a signal to start spontaneous oscillations, which grow exponentially. However, the oscillations cannot grow forever; the nonlinearity of the diode eventually limits the amplitude.
At large amplitudes the circuit is nonlinear, so the linear analysis above does not strictly apply and differential resistance is undefined; but the circuit can be understood by considering to be the "average" resistance over the cycle. As the amplitude of the sine wave exceeds the width of the negative resistance region and the voltage swing extends into regions of the curve with positive differential resistance, the average negative differential resistance becomes smaller, and thus the total resistance and the damping becomes less negative and eventually turns positive. Therefore, the oscillations will stabilize at the amplitude at which the damping becomes zero, which is when .[21]
Gunn diodes have negative resistance in the range −5 to −25 ohms.[135] In oscillators where is close to ; just small enough to allow the oscillator to start, the voltage swing will be mostly limited to the linear portion of the I–V curve, the output waveform will be nearly sinusoidal and the frequency will be most stable. In circuits in which is far below , the swing extends further into the nonlinear part of the curve, the clipping distortion of the output sine wave is more severe,[134] and the frequency will be increasingly dependent on the supply voltage.
Types of circuit
Negative resistance oscillator circuits can be divided into two types, which are used with the two types of negative differential resistance – voltage controlled (VCNR), and current controlled (CCNR)[91][103]
- Negative resistance (voltage controlled) oscillator: Since VCNR ("N" type) devices require a low impedance bias and are stable for load impedances less than r,[103] the ideal oscillator circuit for this device has the form shown at top right, with a voltage source Vbias to bias the device into its negative resistance region, and parallel resonant circuit load LC. The resonant circuit has high impedance only at its resonant frequency, so the circuit will be unstable and oscillate only at that frequency.
- Negative conductance (current controlled) oscillator: CCNR ("S" type) devices, in contrast, require a high impedance bias and are stable for load impedances greater than r.[103] The ideal oscillator circuit is like that at bottom right, with a current source bias Ibias (which may consist of a voltage source in series with a large resistor) and series resonant circuit LC. The series LC circuit has low impedance only at its resonant frequency and so will only oscillate there.
Conditions for oscillation
Most oscillators are more complicated than the Gunn diode example, since both the active device and the load may have reactance (X) as well as resistance (R). Modern negative resistance oscillators are designed by a frequency domain technique due to K. Kurokawa.[88][118][136] The circuit diagram is imagined to be divided by a "reference plane" (red) which separates the negative resistance part, the active device, from the positive resistance part, the resonant circuit and output load (right).[137] The complex impedance of the negative resistance part depends on frequency ω but is also nonlinear, in general declining with the amplitude of the AC oscillation current I; while the resonator part is linear, depending only on frequency.[88][117][137] The circuit equation is so it will only oscillate (have nonzero I) at the frequency ω and amplitude I for which the total impedance is zero.[88] This means the magnitude of the negative and positive resistances must be equal, and the reactances must be conjugate[85][117][118][137]
Alternately, the condition for oscillation can be expressed using the reflection coefficient.[85] The voltage waveform at the reference plane can be divided into a component V1 travelling toward the negative resistance device and a component V2 travelling in the opposite direction, toward the resonator part. The reflection coefficient of the active device is greater than one, while that of the resonator part is less than one. During operation the waves are reflected back and forth in a round trip so the circuit will oscillate only if[85][117][137]
Amplifiers
Negative differential resistance devices such as Gunn and IMPATT diodes are also used to make amplifiers, particularly at microwave frequencies, but not as commonly as oscillators.[86] Because negative resistance devices have only one port (two terminals), unlike two-port devices such as transistors, the outgoing amplified signal has to leave the device by the same terminals as the incoming signal enters it.[12][86] Without some way of separating the two signals, a negative resistance amplifier is bilateral; it amplifies in both directions, so it suffers from sensitivity to load impedance and feedback problems.[86] To separate the input and output signals, many negative resistance amplifiers use nonreciprocal devices such as isolators and directional couplers.[86]
Reflection amplifier
One widely used circuit is the reflection amplifier in which the separation is accomplished by a circulator.[86][138][139][140] A circulator is a nonreciprocal solid-state component with three ports (connectors) which transfers a signal applied to one port to the next in only one direction, port 1 to port 2, 2 to 3, and 3 to 1. In the reflection amplifier diagram the input signal is applied to port 1, a biased VCNR negative resistance diode N is attached through a filter F to port 2, and the output circuit is attached to port 3. The input signal is passed from port 1 to the diode at port 2, but the outgoing "reflected" amplified signal from the diode is routed to port 3, so there is little coupling from output to input. The characteristic impedance of the input and output transmission lines, usually 50Ω, is matched to the port impedance of the circulator. The purpose of the filter F is to present the correct impedance to the diode to set the gain. At radio frequencies NR diodes are not pure resistive loads and have reactance, so a second purpose of the filter is to cancel the diode reactance with a conjugate reactance to prevent standing waves.[140][141]
The filter has only reactive components and so does not absorb any power itself, so power is passed between the diode and the ports without loss. The input signal power to the diode is
Masers and parametric amplifiers are extremely low noise NR amplifiers that are also implemented as reflection amplifiers; they are used in applications like radio telescopes.[141]
Switching circuits
Negative differential resistance devices are also used in switching circuits in which the device operates nonlinearly, changing abruptly from one state to another, with hysteresis.[15] The advantage of using a negative resistance device is that a relaxation oscillator, flip-flop or memory cell can be built with a single active device,[81] whereas the standard logic circuit for these functions, the Eccles-Jordan multivibrator, requires two active devices (transistors). Three switching circuits built with negative resistances are
- Astable multivibrator – a circuit with two unstable states, in which the output periodically switches back and forth between the states. The time it remains in each state is determined by the time constant of an RC circuit. Therefore, it is a relaxation oscillator, and can produce square waves or triangle waves.
- Monostable multivibrator – is a circuit with one unstable state and one stable state. When in its stable state a pulse is applied to the input, the output switches to its other state and remains in it for a period of time dependent on the time constant of the RC circuit, then switches back to the stable state. Thus the monostable can be used as a timer or delay element.
- Bistable multivibrator or flip flop – is a circuit with two stable states. A pulse at the input switches the circuit to its other state. Therefore, bistables can be used as memory circuits, and digital counters.
Other applications
Neuronal models
Some instances of neurons display regions of negative slope conductances (RNSC) in voltage-clamp experiments.[142] The negative resistance here is implied were one to consider the neuron a typical Hodgkin–Huxley style circuit model.
History
Negative resistance was first recognized during investigations of electric arcs, which were used for lighting during the 19th century.[143] In 1881 Alfred Niaudet[144] had observed that the voltage across arc electrodes decreased temporarily as the arc current increased, but many researchers thought this was a secondary effect due to temperature.[145] The term "negative resistance" was applied by some to this effect, but the term was controversial because it was known that the resistance of a passive device could not be negative.[68][145][146] Beginning in 1895 Hertha Ayrton, extending her husband William's research with a series of meticulous experiments measuring the I–V curve of arcs, established that the curve had regions of negative slope, igniting controversy.[65][145][147] Frith and Rodgers in 1896[145][148] with the support of the Ayrtons[65] introduced the concept of differential resistance, dv/di, and it was slowly accepted that arcs had negative differential resistance. In recognition of her research, Hertha Ayrton became the first woman voted for induction into the Institute of Electrical Engineers.[147]
Arc transmitters
George Francis FitzGerald first realized in 1892 that if the damping resistance in a resonant circuit could be made zero or negative, it would produce continuous oscillations.[143][149] In the same year Elihu Thomson built a negative resistance oscillator by connecting an LC circuit to the electrodes of an arc,[105][150] perhaps the first example of an electronic oscillator. William Duddell, a student of Ayrton at London Central Technical College, brought Thomson's arc oscillator to public attention.[105][143][147] Due to its negative resistance, the current through an arc was unstable, and arc lights would often produce hissing, humming, or even howling noises. In 1899, investigating this effect, Duddell connected an LC circuit across an arc and the negative resistance excited oscillations in the tuned circuit, producing a musical tone from the arc.[105][143][147] To demonstrate his invention Duddell wired several tuned circuits to an arc and played a tune on it.[143][147] Duddell's "singing arc" oscillator was limited to audio frequencies.[105] However, in 1903 Danish engineers Valdemar Poulsen and P. O. Pederson increased the frequency into the radio range by operating the arc in a hydrogen atmosphere in a magnetic field,[151] inventing the Poulsen arc radio transmitter, which was widely used until the 1920s.[105][143]
Vacuum tubes
By the early 20th century, although the physical causes of negative resistance were not understood, engineers knew it could generate oscillations and had begun to apply it.[143] Heinrich Barkhausen in 1907 showed that oscillators must have negative resistance.[84] Ernst Ruhmer and Adolf Pieper discovered that mercury vapor lamps could produce oscillations, and by 1912 AT&T had used them to build amplifying repeaters for telephone lines.[143]
In 1918 Albert Hull at GE discovered that vacuum tubes could have negative resistance in parts of their operating ranges, due to a phenomenon called secondary emission.[9][36][152] In a vacuum tube when electrons strike the plate electrode they can knock additional electrons out of the surface into the tube. This represents a current away from the plate, reducing the plate current.[9] Under certain conditions increasing the plate voltage causes a decrease in plate current. By connecting an LC circuit to the tube Hull created an oscillator, the dynatron oscillator. Other negative resistance tube oscillators followed, such as the magnetron invented by Hull in 1920.[60]
The negative impedance converter originated from work by Marius Latour around 1920.[153][154] He was also one of the first to report negative capacitance and inductance.[153] A decade later, vacuum tube NICs were developed as telephone line repeaters at Bell Labs by George Crisson and others,[26][127] which made transcontinental telephone service possible.[127] Transistor NICs, pioneered by Linvill in 1953, initiated a great increase in interest in NICs and many new circuits and applications developed.[125][127]
Solid state devices
Negative differential resistance in semiconductors was observed around 1909 in the first point-contact junction diodes, called cat's whisker detectors, by researchers such as William Henry Eccles[155][156] and G. W. Pickard.[156][157] They noticed that when junctions were biased with a DC voltage to improve their sensitivity as radio detectors, they would sometimes break into spontaneous oscillations.[157] However the effect was not pursued.
The first person to exploit negative resistance diodes practically was Russian radio researcher Oleg Losev, who in 1922 discovered negative differential resistance in biased zincite (zinc oxide) point contact junctions.[157][158][159][160][161] He used these to build solid-state amplifiers, oscillators, and amplifying and regenerative radio receivers, 25 years before the invention of the transistor.[155][159][161][162] Later he even built a superheterodyne receiver.[161] However his achievements were overlooked because of the success of vacuum tube technology. After ten years he abandoned research into this technology (dubbed "Crystodyne" by Hugo Gernsback),[162] and it was forgotten.[161]
The first widely used solid-state negative resistance device was the tunnel diode, invented in 1957 by Japanese physicist Leo Esaki.[67][163] Because they have lower parasitic capacitance than vacuum tubes due to their small junction size, diodes can function at higher frequencies, and tunnel diode oscillators proved able to produce power at microwave frequencies, above the range of ordinary vacuum tube oscillators. Its invention set off a search for other negative resistance semiconductor devices for use as microwave oscillators,[164] resulting in the discovery of the IMPATT diode, Gunn diode, TRAPATT diode, and others. In 1969 Kurokawa derived conditions for stability in negative resistance circuits.[136] Currently negative differential resistance diode oscillators are the most widely used sources of microwave energy,[80] and many new negative resistance devices have been discovered in recent decades.[67]
Notes
- ^ Some microwave texts use this term in a more specialized sense: a voltage controlled negative resistance device (VCNR) such as a tunnel diode is called a "negative conductance" while a current controlled negative resistance device (CCNR) such as an IMPATT diode is called a "negative resistance". See the Stability conditions section
- ^ a b c d The terms "open-circuit stable" and "short-circuit stable" have become somewhat confused over the years, and are used in the opposite sense by some authors. The reason is that in linear circuits if the load line crosses the I-V curve of the NR device at one point, the circuit is stable, while in nonlinear switching circuits that operate by hysteresis the same condition causes the circuit to become unstable and oscillate as an astable multivibrator, and the bistable region is considered the "stable" one. This article uses the former "linear" definition, the earliest one, which is found in the Abraham, Bangert, Dorf, Golio, and Tellegen sources. The latter "switching circuit" definition is found in the Kumar and Taub sources.
References
- ^ a b c d Sinclair, Ian Robertson (2001). Sensors and transducers, 3rd Ed. Newnes. pp. 69–70. ISBN 978-0750649322.
- ^ a b Kularatna, Nihal (1998). Power Electronics Design Handbook. Newnes. pp. 232–233. ISBN 978-0750670739. Archived from the original on 2017-12-21.
- ^ a b c d e f g h i j k l m n o p q r s t u v w x Aluf, Ofer (2012). Optoisolation Circuits: Nonlinearity Applications in Engineering. World Scientific. pp. 8–11. ISBN 978-9814317009. Archived from the original on 2017-12-21. This source uses the term "absolute negative differential resistance" to refer to active resistance
- ^ Amos, Stanley William; Amos, Roger S.; Dummer, Geoffrey William Arnold (1999). Newnes Dictionary of Electronics, 4th Ed. Newnes. p. 211. ISBN 978-0750643313.
- ^ Graf, Rudolf F. (1999). Modern Dictionary of Electronics, 7th Ed. Newnes. p. 499. ISBN 978-0750698665. Archived from the original on 2017-12-21.
- ^ a b c d e f g h i j Shanefield, Daniel J. (2001). Industrial Electronics for Engineers, Chemists, and Technicians. Elsevier. pp. 18–19. ISBN 978-0815514671.
- ^ a b c d e f g Carr, Joseph J. (1997). Microwave & Wireless Communications Technology. USA: Newnes. pp. 313–314. ISBN 978-0750697071. Archived from the original on 2017-07-07.
- ^ a b c d Groszkowski, Janusz (1964). Frequency of Self-Oscillations. Warsaw: Pergamon Press - PWN (Panstwowe Wydawnictwo Naukowe). pp. 45–51. ISBN 978-1483280301. Archived from the original on 2016-04-05.
- ^ a b c d e f g h Gottlieb, Irving M. (1997). Practical Oscillator Handbook. Elsevier. pp. 75–76. ISBN 978-0080539386. Archived from the original on 2016-05-15.
- ^ a b c d e f g Kaplan, Ross M. (December 1968). "Equivalent circuits for negative resistance devices" (PDF). Technical Report No. RADC-TR-68-356. Rome Air Development Center, US Air Force Systems Command: 5–8. Archived from the original (PDF) on August 19, 2014. Retrieved September 21, 2012.
{{cite journal}}
: Cite journal requiresjournal=
(help) - ^ a b c d e f "In semiconductor physics, it is known that if a two-terminal device shows negative differential resistance it can amplify." Suzuki, Yoshishige; Kuboda, Hitoshi (March 10, 2008). "Spin-torque diode effect and its application". Journal of the Physical Society of Japan. 77 (3): 031002. Bibcode:2008JPSJ...77c1002S. doi:10.1143/JPSJ.77.031002. Archived from the original on December 21, 2017. Retrieved June 13, 2013.
- ^ a b c d Iniewski, Krzysztof (2007). Wireless Technologies: Circuits, Systems, and Devices. CRC Press. p. 488. ISBN 978-0849379963.
- ^ a b c d Shahinpoor, Mohsen; Schneider, Hans-Jörg (2008). Intelligent Materials. London: Royal Society of Chemistry. p. 209. ISBN 978-0854043354.
- ^ a b c Golio, Mike (2000). The RF and Microwave Handbook. CRC Press. p. 5.91. ISBN 978-1420036763. Archived from the original on 2017-12-21.
- ^ a b c d e Kumar, Umesh (April 2000). "Design of an indiginized negative resistance characteristics curve tracer" (PDF). Active and Passive Elect. Components. Hindawi Publishing Corp. 23: 1–2. Archived (PDF) from the original on August 19, 2014. Retrieved May 3, 2013.
- ^ a b c d e f g Beneking, H. (1994). High Speed Semiconductor Devices: Circuit aspects and fundamental behaviour. Springer. pp. 114–117. ISBN 978-0412562204. Archived from the original on 2017-12-21.
- ^ a b c d e f g h i Gilmore, Rowan; Besser, Les (2003). Active Circuits and Systems. USA: Artech House. pp. 27–29. ISBN 9781580535229.
- ^ a b Herrick, Robert J. (2003). DC/AC Circuits and Electronics: Principles & Applications. Cengage Learning. pp. 106, 110–111. ISBN 978-0766820838.
- ^ a b c Haisch, Bernhard (2013). "Nonlinear conduction". Online textbook Vol. 1: DC Circuits. All About Circuits website. Archived from the original on March 20, 2014. Retrieved March 8, 2014.
- ^ a b c d e f g Simpson, R. E. (1987). Introductory Electronics for Scientists and Engineers, 2nd Ed (PDF). US: Addison-Wesley. pp. 4–5. ISBN 978-0205083770. Archived from the original (PDF) on 2014-08-19. Retrieved 2014-08-18.
- ^ a b c d e f g h i j k l m n o p q Lesurf, Jim (2006). "Negative Resistance Oscillators". The Scots Guide to Electronics. School of Physics and Astronomy, Univ. of St. Andrews. Archived from the original on July 16, 2012. Retrieved August 20, 2012.
- ^ a b Kaiser, Kenneth L. (2004). Electromagnetic Compatibility Handbook. CRC Press. pp. 13–52. ISBN 978-0-8493-2087-3.
- ^ a b c d e f g h i j k l m n o p Simin, Grigory (2011). "Lecture 08: Tunnel Diodes (Esaki diode)" (PDF). ELCT 569: Semiconductor Electronic Devices. Prof. Grigory Simin, Univ. of South Carolina. Archived from the original (PDF) on September 23, 2015. Retrieved September 25, 2012., pp. 18–19,
- ^ a b c d e f g h i j k l m n o Chua, Leon (2000). Linear and Non Linear Circuits (PDF). McGraw-Hill Education. pp. 49–50. ISBN 978-0071166508. Archived from the original (PDF) on 2015-07-26.,
- ^ a b c d Traylor, Roger L. (2008). "Calculating Power Dissipation" (PDF). Lecture Notes – ECE112:Circuit Theory. Dept. of Elect. and Computer Eng., Oregon State Univ. Archived (PDF) from the original on 6 September 2006. Retrieved 23 October 2012., archived
- ^ a b c d e f g h Crisson, George (July 1931). "Negative Impedances and the Twin 21-Type Repeater". Bell System Tech. J. 10 (3): 485–487. doi:10.1002/j.1538-7305.1931.tb01288.x. Retrieved December 4, 2012.
- ^ a b c d e f g h Morecroft, John Harold; A. Pinto; Walter Andrew Curry (1921). Principles of Radio Communication. US: John Wiley and Sons. p. 112.
- ^ a b c d Kouřil, František; Vrba, Kamil (1988). Non-linear and parametric circuits: principles, theory and applications. Ellis Horwood. p. 38. ISBN 978-0853126065.
- ^ a b c d e "...since [static] resistance is always positive...the resultant power [from Joule's law] must also always be positive. ...[this] means that the resistor always absorbs power." Karady, George G.; Holbert, Keith E. (2013). Electrical Energy Conversion and Transport: An Interactive Computer-Based Approach, 2nd Ed. John Wiley and Sons. p. 3.21. ISBN 978-1118498033.
- ^ a b c "Since the energy absorbed by a (static) resistance is always positive, resistances are passive devices." Bakshi, U.A.; V.U.Bakshi (2009). Electrical And Electronics Engineering. Technical Publications. p. 1.12. ISBN 978-8184316971. Archived from the original on 2017-12-21.
- ^ a b Glisson, Tildon H. (2011). Introduction to Circuit Analysis and Design. USA: Springer. pp. 114–116. ISBN 978-9048194421. Archived from the original on 2017-12-08., see footnote p. 116
- ^ a b c d Baker, R. Jacob (2011). CMOS: Circuit Design, Layout, and Simulation. John Wiley & Sons. p. 21.29. ISBN 978-1118038239. In this source "negative resistance" refers to negative static resistance.
- ^ a b Herrick, Robert J. (2003). DC/AC Circuits and Electronics: Principles & Applications. Cengage Learning. p. 105. ISBN 978-0766820838. Archived from the original on 2016-04-10.
- ^ a b c Ishii, Thomas Koryu (1990). Practical microwave electron devices. Academic Press. p. 60. ISBN 978-0123747006. Archived from the original on 2016-04-08.
- ^ a b c Pippard, A. B. (2007). The Physics of Vibration. Cambridge University Press. pp. 350, fig. 36, p. 351, fig. 37a, p. 352 fig. 38c, p. 327, fig. 14c. ISBN 978-0521033336. Archived from the original on 2017-12-21. In some of these graphs, the curve is reflected in the vertical axis so the negative resistance region appears to have positive slope.
- ^ a b c d e f g h i Butler, Lloyd (November 1995). "Negative Resistance Revisited". Amateur Radio magazine. Wireless Institute of Australia, Bayswater, Victoria. Archived from the original on September 14, 2012. Retrieved September 22, 2012. on Lloyd Butler's personal website Archived 2014-08-19 at the Wayback Machine
- ^ a b c d e f g h i j k Ghadiri, Aliakbar (Fall 2011). "Design of Active-Based Passive Components for Radio Frequency Applications". PhD Thesis. Electrical and Computer Engineering Dept., Univ. of Alberta: 9–10. doi:10.7939/R3N88J. Archived from the original on June 28, 2012. Retrieved March 21, 2014.
{{cite journal}}
: Cite journal requiresjournal=
(help) - ^ a b c Razavi, Behzad (2001). Design of Analog CMOS Integrated Circuits. The McGraw-Hill Companies. pp. 505–506. ISBN 978-7302108863.
- ^ a b c d e f g h i j k l m Solymar, Laszlo; Donald Walsh (2009). Electrical Properties of Materials, 8th Ed. UK: Oxford University Press. pp. 181–182. ISBN 978-0199565917.
- ^ Reich, Herbert J. (1941). Principles of Electron Tubes (PDF). US: McGraw-Hill. p. 215. Archived (PDF) from the original on 2017-04-02. on Peter Millet's Tubebooks Archived 2015-03-24 at the Wayback Machine website
- ^ a b c Prasad, Sheila; Hermann Schumacher; Anand Gopinath (2009). High-Speed Electronics and Optoelectronics: Devices and Circuits. Cambridge Univ. Press. p. 388. ISBN 978-0521862837.
- ^ a b c d e f g h i j k Deliyannis, T.; Yichuang Sun; J.K. Fidler (1998). Continuous-Time Active Filter Design. CRC Press. pp. 82–84. ISBN 978-0849325731. Archived from the original on 2017-12-21.
- ^ a b c d e f g h i j k l m Rybin, Yu. K. (2011). Electronic Devices for Analog Signal Processing. Springer. pp. 155–156. ISBN 978-9400722040.
- ^ a b c d e f g h Wilson, Marcus (November 16, 2010). "Negative Resistance". Sciblog 2010 Archive. Science Media Center. Archived from the original on October 4, 2012. Retrieved September 26, 2012., archived
- ^ a b c d Horowitz, Paul (2004). "Negative Resistor – Physics 123 demonstration with Paul Horowitz". Video lecture, Physics 123, Harvard Univ. YouTube. Archived from the original on December 17, 2015. Retrieved November 20, 2012. In this video Prof. Horowitz demonstrates that negative static resistance actually exists. He has a black box with two terminals, labelled "−10 kilohms" and shows with ordinary test equipment that it acts like a linear negative resistor (active resistor) with a resistance of −10 KΩ: a positive voltage across it causes a proportional negative current through it, and when connected in a voltage divider with an ordinary resistor the output of the divider is greater than the input, it can amplify. At the end he opens the box and shows it contains an op-amp negative impedance converter circuit and battery.
- ^ a b c d e f g h i j k l m n Hickman, Ian (2013). Analog Circuits Cookbook. New York: Elsevier. pp. 8–9. ISBN 978-1483105352. Archived from the original on 2016-05-27.
- ^ a b c see "Negative resistance by means of feedback" section, Pippard, A. B. (2007). The Physics of Vibration. Cambridge University Press. pp. 314–326. ISBN 978-0521033336. Archived from the original on 2017-12-21.
- ^ a b Popa, Cosmin Radu (2012). "Active Resistor Circuits". Synthesis of Analog Structures for Computational Signal Processing. Springer. p. 323. doi:10.1007/978-1-4614-0403-3_7. ISBN 978-1-4614-0403-3.
- ^ a b c Miano, Giovanni; Antonio Maffucci (2001). Transmission Lines and Lumped Circuits. Academic Press. pp. 396, 397. ISBN 978-0121897109. Archived from the original on 2017-10-09. This source calls negative differential resistances "passive resistors" and negative static resistances "active resistors".
- ^ a b c d e Dimopoulos, Hercules G. (2011). Analog Electronic Filters: Theory, Design and Synthesis. Springer. pp. 372–374. ISBN 978-9400721890. Archived from the original on 2017-11-16.
- ^ Fett, G. H. (October 4, 1943). "Negative Resistance as a Machine Parameter". Journal of Applied Physics. 14 (12): 674–678. Bibcode:1943JAP....14..674F. doi:10.1063/1.1714945. Archived from the original on March 17, 2014. Retrieved December 2, 2012., abstract.
- ^ Babin, Perry (1998). "Output Impedance". Basic Car Audio Electronics website. Archived from the original on April 17, 2015. Retrieved December 28, 2014.
- ^ Glisson, 2011 Introduction to Circuit Analysis and Design, p. 96 Archived 2016-04-13 at the Wayback Machine
- ^ a b c d e f g Fogiel, Max (1988). The electronics problem solver. Research & Education Assoc. pp. 1032.B–1032.D. ISBN 978-0878915439.
- ^ Iezekiel, Stavros (2008). Microwave Photonics: Devices and Applications. John Wiley and Sons. p. 120. ISBN 978-0470744864.
- ^ a b c d Kapoor, Virender; S. Tatke (1999). Telecom Today: Application and Management of Information Technology. Allied Publishers. pp. 144–145. ISBN 978-8170239604.
- ^ a b c Radmanesh, Matthew M. (2009). Advanced RF & Microwave Circuit Design. AuthorHouse. pp. 479–480. ISBN 978-1425972431.
- ^ url = "KeelyNet on negative resistance - 04/07/00". Archived from the original on 2006-09-06. Retrieved 2006-09-08.
- ^ a b Whitaker, Jerry C. (2005). The electronics handbook, 2nd Ed. CRC Press. p. 379. ISBN 978-0849318894. Archived from the original on 2017-03-31.
- ^ a b Gilmour, A. S. (2011). Klystrons, Traveling Wave Tubes, Magnetrons, Cross-Field Amplifiers, and Gyrotrons. Artech House. pp. 489–491. ISBN 978-1608071845. Archived from the original on 2014-07-28.
- ^ Illingworth, Valerie (2009). Astronomy. Infobase Publishing. p. 290. ISBN 978-1438109329.
- ^ Rao, R. S. (2012). Microwave Engineering. PHI Learning Pvt. Ltd. p. 440. ISBN 978-8120345140.
- ^ Raju, Gorur Govinda (2005). Gaseous Electronics: Theory and Practice. CRC Press. p. 453. ISBN 978-0203025260. Archived from the original on 2015-03-22.
- ^ Siegman, A. E. (1986). Lasers. University Science Books. pp. 63. ISBN 978-0935702118.
neon negative resistance glow discharge.
, fig. 1.54 - ^ a b c Ayrton, Hertha (August 16, 1901). "The Mechanism of the Electric Arc". The Electrician. London: The Electrician Printing & Publishing Co. 47 (17): 635–636. Retrieved January 2, 2013.
- ^ Satyam, M.; K. Ramkumar (1990). Foundations of Electronic Devices. New Age International. p. 501. ISBN 978-8122402940. Archived from the original on 2014-09-10.
- ^ a b c d e f g h i Franz, Roger L. (June 24, 2010). "Use nonlinear devices as linchpins to next-generation design". Electronic Design Magazine. Penton Media Inc. Archived from the original on June 18, 2015. Retrieved September 17, 2012., . An expanded version of this article with graphs and an extensive list of new negative resistance devices appears in Franz, Roger L. (2012). "Overview of Nonlinear Devices and Circuit Applications". Sustainable Technology. Roger L. Franz personal website. Retrieved September 17, 2012.
- ^ a b c d e f Thompson, Sylvanus P. (July 3, 1896). "On the properties of a body having a negative electric resistance". The Electrician. London: Benn Bros. 37 (10): 316–318. Archived from the original on November 6, 2017. Retrieved June 7, 2014. also see editorial, "Positive evidence and negative resistance", p. 312
- ^ a b Grant, Paul M. (July 17, 1998). "Journey Down the Path of Least Resistance" (PDF). OutPost on the Endless Frontier blog. EPRI News, Electric Power Research Institute. Archived (PDF) from the original on April 21, 2013. Retrieved December 8, 2012. on Paul Grant personal website Archived 2013-07-22 at the Wayback Machine
- ^ Cole, K.C. (July 10, 1998). "Experts Scoff at Claim of Electricity Flowing With 'Negative Resistance'". Los Angeles Times. Los Angeles. Archived from the original on August 8, 2015. Retrieved December 8, 2012. on Los Angeles Times website Archived 2013-08-02 at the Wayback Machine. In this article the term "negative resistance" refers to negative static resistance.
- ^ a b Klein, Sanford; Gregory Nellis (2011). Thermodynamics. Cambridge University Press. p. 206. ISBN 978-1139498180.
- ^ resonant.freq (November 2, 2011). "Confusion regarding negative resistance circuits". Electrical Engineering forum. Physics Forums, Arizona State Univ. Archived from the original on August 19, 2014. Retrieved August 17, 2014.
- ^ Gibilisco, Stan (2002). Physics Demystified (PDF). McGraw Hill Professional. p. 391. ISBN 978-0071412124. Archived (PDF) from the original on 2014-05-19.
- ^ a b Chen, Wai-Kai (2006). Nonlinear and distributed circuits. CRC Press. pp. 1.18–1.19. ISBN 978-0849372766. Archived from the original on 2017-08-24.
- ^ a b see Chua, Leon O. (November 1980). "Dynamic Nonlinear Networks: State of the Art" (PDF). IEEE Transactions on Circuits and Systems. US: Inst. of Electrical and Electronic Engineers. CAS-27 (11): 1076–1077. Archived (PDF) from the original on August 19, 2014. Retrieved September 17, 2012. Definitions 6 & 7, fig. 27, and Theorem 10 for precise definitions of what this condition means for the circuit solution.
- ^ a b Muthuswamy, Bharathwaj; Joerg Mossbrucker (2010). "A framework for teaching nonlinear op-amp circuits to junior undergraduate electrical engineering students". 2010 Conference Proceedings. American Society for Engineering Education. Retrieved October 18, 2012.[permanent dead link], Appendix B. This derives a slightly more complicated circuit where the two voltage divider resistors are different to allow scaling, but it reduces to the text circuit by setting R2 and R3 in the source to R1 in the text, and R1 in source to Z in the text. The I–V curve is the same.
- ^ a b c d e f g h i j k l m Kumar, Anand (2004). Pulse and Digital Circuits. PHI Learning Pvt. Ltd. pp. 274, 283–289. ISBN 978-8120325968.
- ^ a b c d Tellegen, B. d. h. (April 1972). "Stability of negative resistances". International Journal of Electronics. 32 (6): 681–686. doi:10.1080/00207217208938331.
- ^ Kidner, C.; I. Mehdi; J. R. East; J. I. Haddad (March 1990). "Potential and limitations of resonant tunneling diodes" (PDF). First International Symposium on Space Terahertz Technology, March 5–6, 1990, Univ. of Michigan. Ann Arbor, M: US National Radio Astronomy Observatory. p. 85. Archived (PDF) from the original on August 19, 2014. Retrieved October 17, 2012.
- ^ a b c Du, Ke-Lin; M. N. S. Swamy (2010). Wireless Communication Systems: From RF Subsystems to 4G Enabling Technologies. Cambridge Univ. Press. p. 438. ISBN 978-0521114035. Archived from the original on 2017-10-31.
- ^ a b c Abraham, George (1974). "Multistable semiconductor devices and integrated circuits". Advances in Electronics and Electron Physics, Vol. 34–35. Academic Press. pp. 270–398. ISBN 9780080576992. Retrieved September 17, 2012.
- ^ a b c Weaver, Robert (2009). "Negative Resistance Devices: Graphical Analysis and Load Lines". Bob's Electron Bunker. Robert Weaver personal website. Archived from the original on February 4, 2013. Retrieved December 4, 2012.
- ^ a b Lowry, H. R.; J. Georgis; E. Gottlieb (1961). General Electric Tunnel Diode Manual, 1st Ed (PDF). New York: General Electric Corp. pp. 18–19. Archived (PDF) from the original on 2013-05-12.
- ^ a b c d The requirements for negative resistance in oscillators were first set forth by Heinrich Barkhausen in 1907 in Das Problem Der Schwingungserzeugung according to Duncan, R. D. (March 1921). "Stability conditions in vacuum tube circuits". Physical Review. 17 (3): 304. Bibcode:1921PhRv...17..302D. doi:10.1103/physrev.17.302. Retrieved July 17, 2013.: "For alternating current power to be available in a circuit which has externally applied only continuous voltages, the average power consumption during a cycle must be negative...which demands the introduction of negative resistance [which] requires that the phase difference between voltage and current lie between 90° and 270°...[and for nonreactive circuits] the value 180° must hold... The volt-ampere characteristic of such a resistance will therefore be linear, with a negative slope..."
- ^ a b c d e f g Frank, Brian (2006). "Microwave Oscillators" (PDF). Class Notes: ELEC 483 – Microwave and RF Circuits and Systems. Dept. of Elec. and Computer Eng., Queen's Univ., Ontario. pp. 4–9. Retrieved September 22, 2012.[permanent dead link]
- ^ a b c d e f g h Golio (2000) The RF and Microwave Handbook, pp. 7.25–7.26, 7.29
- ^ a b Chang, Kai (2000). RF and Microwave Wireless Systems. USA: John Wiley & Sons. pp. 139–140. ISBN 978-0471351993.
- ^ a b c d e f g Maas, Stephen A. (2003). Nonlinear Microwave and RF Circuits, 2nd Ed. Artech House. pp. 542–544. ISBN 978-1580534840. Archived from the original on 2017-02-25.
- ^ Mazda, F. F. (1981). Discrete Electronic Components. CUP Archive. p. 8. ISBN 978-0521234702. Archived from the original on 2017-08-03.
- ^ Bowick, Chris Bowick; John Blyler; Cheryl J. Ajluni (2008). RF Circuit Design, 2nd Ed. USA: Newnes. p. 111. ISBN 978-0750685184.
- ^ a b Rhea, Randall W. (2010). Discrete Oscillator Design: Linear, Nonlinear, Transient, and Noise Domains. USA: Artech House. pp. 57, 59. ISBN 978-1608070473. Archived from the original on 2017-10-11.
- ^ Chen, Wai Kai (2004). The Electrical Engineering Handbook. Academic Press. pp. 80–81. ISBN 978-0080477480. Archived from the original on 2016-08-19.
- ^ Dorf, Richard C. (1997). The Electrical Engineering Handbook (2 ed.). CRC Press. p. 179. ISBN 978-1420049763.
- ^ Vukic, Zoran (2003). Nonlinear Control Systems. CRC Press. pp. 53–54. ISBN 978-0203912652. Archived from the original on 2017-10-11.
- ^ Ballard, Dana H. (1999). An Introduction to Natural Computation. MIT Press. p. 143. ISBN 978-0262522588.
- ^ Vukic, Zoran (2003) Nonlinear Control Systems, p. 50, 54
- ^ a b c Crisson (1931) Negative Impedances and the Twin 21-Type Repeater Archived 2013-12-16 at the Wayback Machine, pp. 488–492
- ^ a b c d Karp, M. A. (May 1956). "A transistor D-C negative immittance converter" (PDF). APL/JHU CF-2524. Advanced Physics Lab, Johns Hopkins Univ.: 3, 25–27. Archived from the original (PDF) on August 19, 2014. Retrieved December 3, 2012.
{{cite journal}}
: Cite journal requiresjournal=
(help) on US Defense Technical Information Center Archived 2009-03-16 at the Wayback Machine website - ^ a b c Giannini, Franco; Leuzzi, Giorgio (2004). Non-linear Microwave Circuit Design. John Wiley and Sons. pp. 230–233. ISBN 978-0470847015.
- ^ a b Yngvesson, Sigfrid (1991). Microwave Semiconductor Devices. Springer Science & Business Media. p. 143. ISBN 978-0792391562.
- ^ a b Bangert, J. T. (March 1954). "The Transistor as a Network Element". Bell System Tech. J. 33 (2): 330. Bibcode:1954ITED....1....7B. doi:10.1002/j.1538-7305.1954.tb03734.x. S2CID 51671649. Retrieved June 20, 2014.
- ^ Gilmore, Rowan; Besser, Les (2003). Practical RF Circuit Design for Modern Wireless Systems. Vol. 2. Artech House. pp. 209–214. ISBN 978-1580536745.
- ^ a b c d Krugman, Leonard M. (1954). Fundamentals of Transistors. New York: John F. Rider. pp. 101–102. Archived from the original on 2014-08-19. reprinted on Virtual Institute of Applied Science Archived 2014-12-23 at the Wayback Machine website
- ^ a b c Gottlieb 1997 Practical Oscillator Handbook, pp. 105–108 Archived 2016-05-15 at the Wayback Machine
- ^ a b c d e f Nahin, Paul J. (2001). The Science of Radio: With Matlab and Electronics Workbench Demonstration, 2nd Ed. Springer. pp. 81–85. ISBN 978-0387951508. Archived from the original on 2017-02-25.
- ^ a b Spangenberg, Karl R. (1948). Vacuum Tubes (PDF). McGraw-Hill. p. 721. Archived (PDF) from the original on 2017-03-20., fig. 20.20
- ^ a b c Armstrong, Edwin H. (August 1922). "Some recent developments of regenerative circuits". Proceedings of the IRE. 10 (4): 244–245. doi:10.1109/jrproc.1922.219822. S2CID 51637458. Retrieved September 9, 2013.. "Regeneration" means "positive feedback"
- ^ a b Technical Manual no. 11-685: Fundamentals of Single-Sideband Communication. US Dept. of the Army and Dept. of the Navy. 1961. p. 93.
- ^ Singh, Balwinder; Dixit, Ashish (2007). Analog Electronics. Firewall Media. p. 143. ISBN 978-8131802458.
- ^ Pippard, A. B. (1985). Response and stability: an introduction to the physical theory. CUP Archive. pp. 11–12. ISBN 978-0521266734. This source uses "negative resistance" to mean active resistance
- ^ Podell, A.F.; Cristal, E.G. (May 1971). "Negative-Impedance Converters (NIC) for VHF Through Microwave Circuit Applications". Microwave Symposium Digest, 1971 IEEE GMTT International 16–19 May 1971. USA: Institute of Electrical and Electronics Engineers. pp. 182–183. doi:10.1109/GMTT.1971.1122957. on IEEE website
- ^ Simons, Elliot (March 18, 2002). "Consider the "Deboo" integrator for unipolar noninverting designs". Electronic Design magazine website. Penton Media, Inc. Archived from the original on December 20, 2012. Retrieved November 20, 2012.
- ^ Hamilton, Scott (2007). An Analog Electronics Companion: Basic Circuit Design for Engineers and Scientists. Cambridge University Press. p. 528. ISBN 978-0521687805. Archived from the original on 2017-07-12.
- ^ a b this property was often called "resistance neutralization" in the days of vacuum tubes, see Bennett, Edward; Leo James Peters (January 1921). "Resistance Neutralization: An application of thermionic amplifier circuits". Journal of the AIEE. New York: American Institute of Electrical Engineers. 41 (1): 234–248. Retrieved August 14, 2013. and Ch. 3: "Resistance Neutralization" in Peters, Leo James (1927). Theory of Thermionic Vacuum Tube Circuits (PDF). McGraw-Hill. pp. 62–87. Archived (PDF) from the original on 2016-03-04.
- ^ a b c d e Lee, Thomas H. (2004). The Design of CMOS Radio-Frequency Integrated Circuits, 2nd Ed. UK: Cambridge University Press. pp. 641–642. ISBN 978-0521835398.
- ^ a b c d e Kung, Fabian Wai Lee (2009). "Lesson 9: Oscillator Design" (PDF). RF/Microwave Circuit Design. Prof. Kung's website, Multimedia University. Archived from the original (PDF) on July 22, 2015. Retrieved October 17, 2012., Sec. 3 Negative Resistance Oscillators, pp. 9–10, 14,
- ^ a b c d e f g h Räisänen, Antti V.; Arto Lehto (2003). Radio Engineering for Wireless Communication and Sensor Applications. USA: Artech House. pp. 180–182. ISBN 978-1580535427. Archived from the original on 2017-02-25.
- ^ a b c d e f g h i Ellinger, Frank (2008). Radio Frequency Integrated Circuits and Technologies, 2nd Ed. USA: Springer. pp. 391–394. ISBN 978-3540693246. Archived from the original on 2016-07-31.
- ^ Gottlieb 1997, Practical Oscillator Handbook, p. 84 Archived 2016-05-15 at the Wayback Machine
- ^ a b Li, Dandan; Yannis Tsividis (2002). "Active filters using integrated inductors". Design of High Frequency Integrated Analogue Filters. Institution of Engineering and Technology (IET). p. 58. ISBN 0852969767. Retrieved July 23, 2013.
- ^ a b Rembovsky, Anatoly (2009). Radio Monitoring: Problems, Methods and Equipment. Springer. p. 24. ISBN 978-0387981000. Archived from the original on 2017-07-19.
- ^ a b c Sun, Yichuang Sun (2002). Design of High Frequency Integrated Analogue Filters. IET. pp. 58, 60–62. ISBN 978-0852969762.
- ^ Carr, Joseph (2001). Antenna Toolkit, 2nd Ed. Newnes. p. 193. ISBN 978-0080493886.
- ^ a b c Kennedy, Michael Peter (October 1993). "Three Steps to Chaos: Part 1 – Evolution" (PDF). IEEE Transactions on Circuits and Systems. 40 (10): 640. doi:10.1109/81.246140. Archived (PDF) from the original on November 5, 2013. Retrieved February 26, 2014.
- ^ a b Linvill, J.G. (1953). "Transistor Negative-Impedance Converters". Proceedings of the IRE. 41 (6): 725–729. doi:10.1109/JRPROC.1953.274251. S2CID 51654698.
- ^ "Application Note 1868: Negative resistor cancels op-amp load". Application Notes. Maxim Integrated, Inc. website. January 31, 2003. Retrieved October 8, 2014.
- ^ a b c d Hansen, Robert C.; Robert E. Collin (2011). Small Antenna Handbook. John Wiley & Sons. pp. sec. 2–6, pp. 262–263. ISBN 978-0470890837.
- ^ a b Aberle, James T.; Robert Loepsinger-Romak (2007). Antennas With Non-Foster Matching Networks. Morgan & Claypool. pp. 1–8. ISBN 978-1598291025. Archived from the original on 2017-10-17.
- ^ a b Haddad, G. I.; J. R. East; H. Eisele (2003). "Two-terminal active devices for terahertz sources". Terahertz Sensing Technology: Electronic devices and advanced systems technology. World Scientific. p. 45. ISBN 9789812796820. Retrieved October 17, 2012.
- ^ Laplante, Philip A. Laplante (2005). Comprehensive Dictionary of Electrical Engineering, 2nd Ed. CRC Press. p. 466. ISBN 978-0849330865.
- ^ Chen, Wai Kai (2004). The Electrical Engineering Handbook. London: Academic Press. p. 698. ISBN 978-0121709600. Archived from the original on 2016-08-19.
- ^ Du, Ke-Lin; M. N. S. Swamy (2010). Wireless Communication Systems: From RF Subsystems to 4G Enabling Technologies. Cambridge University Press. p. 438. ISBN 978-0521114035.
- ^ Gottlieb, Irving M. (1997). Practical Oscillator Handbook. Elsevier. pp. 84–85. ISBN 978-0080539386. Archived from the original on 2016-05-15.
- ^ a b Kung, Fabian Wai Lee (2009). "Lesson 9: Oscillator Design" (PDF). RF/Microwave Circuit Design. Prof. Kung's website, Multimedia University. Archived from the original (PDF) on May 26, 2012. Retrieved October 17, 2012., Sec. 3 Negative Resistance Oscillators, p. 21
- ^ Kshetrimayum, Rakhesh Singh. "Experiment 5: Study of I–V Characteristics of Gunn Diodes" (PDF). EC 341 Microwave Laboratory. Electrical Engineering Dept., Indian Institute of Technology, Guwahati, India. Archived (PDF) from the original on January 24, 2014. Retrieved January 8, 2013.
- ^ a b c Kurokawa, K. (July 1969). "Some Basic Characteristics of Broadband Negative Resistance Oscillator Circuits". Bell System Tech. J. 48 (6): 1937–1955. doi:10.1002/j.1538-7305.1969.tb01158.x. Retrieved December 8, 2012. Eq. 10 is the necessary condition for oscillation, eq. 12 is sufficient condition.
- ^ a b c d Rohde, Ulrich L.; Ajay K. Poddar; Georg Böck (2005). The Design of Modern Microwave Oscillators for Wireless Applications:Theory and Optimization. USA: John Wiley & Sons. pp. 96–97. ISBN 978-0471727163. Archived from the original on 2017-09-21.
- ^ a b Das, Annapurna; Das, Sisir K. (2000). Microwave Engineering. Tata McGraw-Hill Education. pp. 394–395. ISBN 978-0074635773.
- ^ a b H. C. Okean, Tunnel diodes in Willardson, Robert K.; Beer, Albert C., Eds. (1971). Semiconductors and Semimetals, Vol. 7 Part B. Academic Press. pp. 546–548. ISBN 978-0080863979.
- ^ a b c d e f Chang, Kai, Millimeter-wave Planar Circuits and Subsystems in Button, Kenneth J., Ed. (1985). Infrared and Millimeter Waves: Millimeter Components and Techniques, Part 5. Vol. 14. Academic Press. pp. 133–135. ISBN 978-0323150613.
- ^ a b c Linkhart, Douglas K. (2014). Microwave Circulator Design (2 ed.). Artech House. pp. 78–81. ISBN 978-1608075836. Archived from the original on 2017-12-10.
- ^ MacLean, Jason N.; Schmidt, Brian J. (September 2001). "Voltage-Sensitivity of Motoneuron NMDA Receptor Channels Is Modulated by Serotonin in the Neonatal Rat Spinal Cord". Journal of Neurophysiology. 86 (3): 1131–1138. doi:10.1152/jn.2001.86.3.1131. PMID 11535663.
- ^ a b c d e f g h Hong, Sungook (2001). Wireless: From Marconi's Black-Box to the Audion (PDF). USA: MIT Press. pp. 159–165. ISBN 978-0262082983. Archived (PDF) from the original on 2014-08-19.
- ^ A. Niaudet, La Lumiere Electrique, No. 3, 1881, p. 287, cited in Encyclopædia Britannica, 11th Ed., Vol. 16, p. 660
- ^ a b c d Garcke, Emile (1911). . In Chisholm, Hugh (ed.). Encyclopædia Britannica. Vol. 16 (11th ed.). Cambridge University Press. pp. 651–673, see pages 660-661.
- ^ Heaviside, Oliver (July 31, 1892). "Correspondence: Negative Resistance". The Electrician. London: "The Electrician" Printing and Publishing Co. 37 (14): 452. Retrieved December 24, 2012., also see letter by Andrew Gray on same page
- ^ a b c d e Gethemann, Daniel (2012). "Singing Arc: The Usefulness of Negative Resistance". Zauberhafte Klangmaschinen. Institut fur Medienarchaologie. Archived from the original on 2012-01-04. Retrieved 2012-04-11.
- ^ Frith, Julius; Charles Rodgers (November 1896). "On the Resistance of the Electric Arc". London, Edinburgh, and Dublin Philosophical Magazine. 42 (258): 407–423. doi:10.1080/14786449608620933. Retrieved May 3, 2013.
- ^ G. Fitzgerald, On the Driving of Electromagnetic Vibrations by Electromagnetic and Electrostatic Engines, read at the January 22, 1892 meeting of the Physical Society of London, in Larmor, Joseph, Ed. (1902). The Scientific Writings of the late George Francis Fitzgerald. London: Longmans, Green and Co. pp. 277–281. Archived from the original on 2014-07-07.
- ^ Morse, A. H. (1925). Radio: Beam and Broadcast. London: Ernest Benn. p. 28. Archived from the original on 2016-03-15.
- ^ Poulsen, Valdemar (12 September 1904). "System for producing continuous electric oscillations". Transactions of the International Electrical Congress, St. Louis, 1904, Vol. 2. J. R. Lyon Co. pp. 963–971. Archived from the original on 9 October 2013. Retrieved 22 September 2013.
- ^ Hull, Albert W. (February 1918). "The Dynatron – A vacuum tube possessing negative electric resistance". Proceedings of the IRE. 6 (1): 5–35. doi:10.1109/jrproc.1918.217353. S2CID 51656451. Retrieved 2012-05-06.
- ^ a b Latour, Marius (October 30, 1920). "Basic Theory of Electron-Tube Amplifiers – Part II". Electrical World. New York: McGraw-Hill. 76 (18): 870–872. Retrieved December 27, 2012.
- ^ Merrill, J.L., Jr. (January 1951). "Theory of the Negative Impedance Converter". Bell System Tech. J. 30 (1): 88–109. doi:10.1002/j.1538-7305.1951.tb01368.x. Retrieved December 9, 2012.
- ^ a b Grebennikov, Andrei (2011). RF and Microwave Transmitter Design. John Wiley & Sons. p. 4. ISBN 978-0470520994. Archived from the original on 2016-09-17.
- ^ a b Pickard, Greenleaf W. (January 1925). "The Discovery of the Oscillating Crystal" (PDF). Radio News. New York: Experimenter Publishing Co. 6 (7): 1166. Retrieved July 15, 2014.
- ^ a b c White, Thomas H. (2021). "Section 14 – Expanded Audio and Vacuum Tube Development (1917–1930)". United States Early Radio History. earlyradiohistory.us. Retrieved May 5, 2021.
- ^ Losev, O. V. (January 1925). "Oscillating Crystals" (PDF). Radio News. New York: Experimenter Publishing Co. 6 (7): 1167, 1287. Retrieved July 15, 2014.
- ^ a b Gabel, Victor (October 1, 1924). "The Crystal as a Generator and Amplifier" (PDF). The Wireless World and Radio Review. London: Iliffe & Sons Ltd. 15: 2–5. Archived (PDF) from the original on October 23, 2014. Retrieved March 20, 2014.
- ^ Ben-Menahem, Ari (2009). Historical Encyclopedia of Natural and Mathematical Sciences, Vol. 1. Springer. p. 3588. ISBN 978-3540688310. Archived from the original on 2017-11-23.
- ^ a b c d Lee, Thomas H. (2004) The Design of CMOS Radio-Frequency Integrated Circuits, 2nd Ed., p. 20
- ^ a b Gernsback, Hugo (September 1924). "A Sensational Radio Invention". Radio News. Experimenter Publishing: 291. Retrieved May 5, 2021. and "The Crystodyne Principle", pp. 294–295
- ^ Esaki, Leo (January 1958). "New Phenomenon in Narrow Germanium p−n Junctions". Physical Review. 109 (2): 603–604. Bibcode:1958PhRv..109..603E. doi:10.1103/PhysRev.109.603.
- ^ Ridley, B. K. (May 7, 1964). ""Electric bubbles" and the quest for negative resistance". New Scientist. London: Cromwell House. 22 (390): 352–355. Retrieved November 15, 2012.
Further reading
- Gottlieb, Irving M. (1997). Practical Oscillator Handbook. Elsevier. ISBN 978-0080539386. How negative differential resistance devices work in oscillators.
- Hong, Sungook (2001). Wireless: From Marconi's Black-Box to the Audion (PDF). USA: MIT Press. ISBN 978-0262082983., ch. 6 Account of discovery of negative resistance and its role in early radio.
- Snelgrove, Martin (2008). "Negative resistance circuits". AccessScience Online Encyclopedia. McGraw-Hill. doi:10.1036/1097-8542.446710. Retrieved May 17, 2012. Elementary one-page introduction to negative resistance.