바나흐 격자
Banach lattice![]() |
In mathematics, specifically in functional analysis and order theory, a Banach lattice is a normed lattice with a norm such that is a Banach space and for all t그는 x y x y은 (는) x ≤ { { { { \ y hold를 의미하며, 여기서 :=x -x. {\x을(는 }).
예제 및 구성
- , 는) 그 절대값과 함께 Banach 격자다.
- Let be a topological space, a Banach lattice and the space of bounded, continuous functions from to with norm becomes a Banach lattice with the pointwise order if and only if for every
특성.
바나흐 격자의 연속적인 이중 공간은 그것의 주문 이중 공간과 동일하다.[1]
참고 항목
참조
- Abramovich, Yuri A.; Aliprantis, C. D. (2002). An Invitation to Operator Theory. Graduate Studies in Mathematics. Vol. 50. American Mathematical Society. ISBN 0-8218-2146-6.
참고 문헌 목록
- Narici, Lawrence; Beckenstein, Edward (2011). Topological Vector Spaces. Pure and applied mathematics (Second ed.). Boca Raton, FL: CRC Press. ISBN 978-1584888666. OCLC 144216834.
- Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135.