요율결정단계
Rate-determining step화학적 운동학에서, 반응의 전체 속도는 종종 가장 느린 단계(RDS) 또는 속도 제한 단계로 알려져 있는 것에 의해 대략적으로 결정된다. 주어진 반응 메커니즘의 경우 (실험 속도 법칙과의 비교를 위해) 해당 속도 방정식의 예측은 종종 이 요율 결정 단계의 근사치를 사용하여 단순화된다.
원칙적으로 반응제 및 제품 농도의 시간 진화는 메커니즘의 개별 단계에 대한 동시 속도 방정식의 집합(각 단계마다 하나씩)에서 결정할 수 있다. 그러나 이러한 미분방정식의 분석적 해결이 항상 쉬운 것은 아니며 경우에 따라서는 수치적 통합이 필요할 수도 있다.[1] 단 하나의 요율 결정 단계에 대한 가설은 수학을 크게 단순화할 수 있다. 가장 간단한 경우 초기 단계가 가장 느리고 전체 속도는 첫 번째 단계의 비율일 뿐이다.
또한, 단일 속도 결정 단계를 가진 메커니즘의 비율 방정식은 대개 단순한 수학적 형태로서, 속도 결정 단계의 메커니즘과 선택과 관계가 명확하다. 올바른 요율 결정 단계는 가능한 각 선택사항에 대한 요율법을 예측하고 다른 예측을 다음의 예와 같이 실험법과 비교함으로써 확인할 수 있다. 아래 2 NO 및 CO.
속도 결정 단계의 개념은 촉매와 연소 같은 많은 화학적 과정을 최적화하고 이해하는데 매우 중요하다.
반응 예: NO 2 + CO
예를 들어 기체 위상 2 반응 NO + CO → NO2 + CO를 고려한다. 이 반응이 한 번에 발생하면 반응 속도(r)는 NO와 2 CO 분자 간의 충돌 속도에 비례하게 된다: r = k[NO 2 ][CO], 여기서 k는 반응 속도 상수이고 대괄호는 어금니 농도를 나타낸다. 또 다른 대표적인 예가 젤도비치 메커니즘이다.
첫 번째 단계 속도 결정
그러나 실제로 관측된 반응률은 NO에서는 2 2차, CO에서는 0차이며,[2] rate 방정식은 r = k[NO 2 ]이다.2 이는 CO 분자가 다른, 더 빠른, 다른 단계로 진입하면서 두 개의 NO 2 분자가 반응하는 단계에 의해 비율이 결정된다는 것을 시사한다. 속도 방정식을 설명하는 두 가지 기본 단계에서 가능한 메커니즘은 다음과 같다.
- NO 2 + NO 2 → NO + NO 3 (느린 스텝, 속도 결정)
- NO 3 + CO → NO 2 + CO2 (패스트 스텝)
이 메커니즘에서 반응성 중간종 NO는 3 rate r로1 첫 번째 단계에서 형성되고 rate r로2 두 번째 단계에서 CO와 반응한다. 단, 마이너스 부호는 역반응 속도를 나타내는 rate r로−1 역방향(NO + NO 3 → 2 NO 2 )에서 첫 번째 스텝이 발생하면 NO로 3 반응할 수 있다.
[NO 3 ]와 같은 반응성 중간값은 낮고 거의 일정하게 유지된다. 따라서 이 값은 정상 상태 근사치로 추정할 수 있으며, 이는 정상 상태 근사치가 형성되는 속도가 소비되는 (총) 속도와 동일함을 명시한다. 이 예에서 NO는 3 한 단계에서 형성되고 두 단계로 반응하므로 다음과 같다.
첫 번째 단계가 느린 단계라는 말은 실제로 반대 방향의 첫 번째 단계가 전진 방향의 두 번째 단계보다 느려서 거의 모든 NO가 3 NO가 아닌 CO와의 반응에 의해 소비된다는 것을 의미한다. 즉, r−1 ≪ r2, 즉 r1 - r2 0 0. 그러나 전체적인 반응 속도는 최종 제품의 형성 속도(여기2 CO)이므로 r2 = r ≈ r1. 즉, 전체 속도는 첫 번째 단계의 속도에 의해 결정되며, (대부분) 첫 번째 단계에서 반응하는 모든 분자는 빠른 두 번째 단계로 이어진다.
전 평형화: 두 번째 단계가 요율 결정일 경우
또 다른 가능한 경우는 두 번째 단계가 느리고 요율이 결정된다는 것으로, 이는 역방향의 첫 번째 단계인 r2 ≪ r보다−1 느리다는 것을 의미한다. 이 가설에서, r1 - r−1 0 0으로, 첫 번째 단계는 평형 상태에 있다(대부분). 전체 속도는 두 번째 단계인 r = r2 ≪ r에1 의해 결정되는데, 첫 번째 단계에서 반응하는 분자는 두 번째 단계까지 지속되는 분자는 매우 적기 때문에 훨씬 느리다. 요율결정 단계에 앞서 중간(여기서 NO 3 )이 반응제와의 평형을 형성하는 상황을 평형전(pre-aliformation[3])으로 기술한다 2 NO와 CO의 반작용에 대해서는 이 가설은 실험에 동의하지 않는 비율 방정식을 내포하고 있기 때문에 기각될 수 있다.
- NO 2 + NO 2 → NO + NO 3 (빠른 단계)
- NO 3 + CO → NO 2 + CO2(느린 스텝, 속도 결정)
첫 번째 단계가 평형 상태일 경우, 평형 상수 표현은 보다 안정적인(그리고 더 쉽게 측정되는) 반응제 및 제품 종의 측면에서 중간 NO의 3 농도를 계산할 수 있다.
그러면 전체 반응률은 다음과 같을 것이다.
이는 위에 제시된 실험 속도법에 동의하지 않으며, 따라서 두 번째 단계는 이러한 반응에 대한 요율 측정이라는 가설을 반증한다. 그러나 그 밖의 일부 반응은 아래와 같이 요율 결정 단계에 앞서 급속한 사전 평준화를 수반하는 것으로 생각된다.
핵 대체
또 다른 예로는 유기화학에서의 단분자핵 대체(S1N) 반응이 있는데, 여기서 그것은 단분자인 첫 번째 속도 결정 단계다. 구체적인 경우는 수산화나트륨에 의한 테르트부틸브로마이드(t-butyl
4
9 bromide, t-CHBr)의 기본적인 가수 분해다. 메커니즘은 두 단계로 구성된다(R은 Tert-butyl actical t-CH를
4
9 의미한다).
이 반응은 r = k[R-Br]로 1차 순서가 확인되는데, 이는 1차 단계가 느리고 속도가 결정된다는 것을 나타낸다. OH로− 두 번째 단계가 훨씬 빠르기 때문에 전체 속도는− OH 농도와 무관하다.
이와는 대조적으로, 메틸브로마이드(CHBr
3)의 알칼리성 가수분해효과는 단일 2분자 단계에서 발생하는 2분자 핵분열 대체(S2N) 반응이다. 요율법은 2차법: r = k[R-Br][오−
.
전환 상태의 구성
메커니즘의 결정에서 유용한 규칙은 요금법의 농도계수가 활성화 콤플렉스나 전환 상태의 구성과 요금을 나타내는 것이다.[4] 위의 NO-CO 2 반응의 경우, 속도는 [NO 2 ]2에 따라 달라지므로 활성화 콤플렉스는 구성 NO를
2
4 가지며, 2 NO는 2 전환 상태 이전의 반응으로 들어가고, CO는 전환 상태 후 반응한다.
다단계 예로는 수용액에서 옥살산과 염소 사이의 반응: HCO
2
2
4 + Cl
2 → 2 CO2 + 2+
H + 2 Cl이다−
.[4] 관측된 요율법은
즉, 속도 결정 단계 전에 반응체가 2H+
+ C를−
잃는 활성 콤플렉스를 의미한다. 활성화 콤플렉스의 공식은 Cl
2 + HCO
2
2
4 - 2 H+
- Cl−
+ x HO2 또는 COCl
2
4 (HO
2)–
x이다. (HO에2 대한 반응률의 가능한 의존성은 연구되지 않았기 때문에 알 수 없는 수의 물 분자가 추가된다. 이는 데이터가 크고 본질적으로 비변환적인 농도로 물 용매에서 얻어진 것이기 때문이다.)
예비 단계가 전환 상태 이전에 발생하는 급속한 전 평형률로 가정되는 하나의 가능한 메커니즘은 다음과[4] 같다.
반응 좌표도
다단계 반응에서, 속도 결정 단계는 반응 좌표 다이어그램에서 가장 높은 Gibbs 에너지와 반드시 일치하는 것은 아니다.[5][3] 에너지가 초기 반응제보다 낮은 반응 중간이 있는 경우, 후속 전환 상태를 통과하는 데 필요한 활성화 에너지는 저 에너지 중간값에 상대적인 해당 상태의 Gibbs 에너지에 의존한다. 속도 결정 단계는 시작 재료 또는 다이어그램의 이전 중간값에 비해 Gibbs 에너지 차이가 가장 큰 단계가 된다.[5][6]
또한, 1차 순서가 아닌 반응 단계의 경우, 비율 결정 단계를 선택할 때 농도 조건을 고려해야 한다.[5][3]
연쇄반응
모든 반응이 단 하나의 요율 결정 단계를 가지는 것은 아니다. 특히 연쇄반응의 속도는 보통 어떤 한 단계로도 조절되지 않는다.[5]
확산 제어
앞의 예에서 속도 결정 단계는 제품으로 이어지는 순차 화학 반응 중 하나였다. 속도 결정 단계는 또한 그들이 상호작용하고 제품을 형성할 수 있는 곳으로 반응제들의 운송이 될 수 있다. 이 경우를 확산제어라고 하며, 일반적으로 활성단지에서 생산되는 제품의 형성이 매우 빨라서 반응제 공급의 제공이 요율을 결정하는 경우에 발생한다.
참고 항목
참조
- ^ 스타인펠트 J. I, 프란시스코 J. S, 하세 W. L. 케미컬 키네틱스 앤 다이내믹스 (제2판, 프렌티스 홀 1999) ch. 2. ch.
- ^ 휘튼 K. W., 갤리 K. D., 데이비스 R. E. 일반 화학 (제4판, Sunders 1992), 페이지 638–639.
- ^ a b c Peter Atkins와 Julio de Paula, Physical Chemistry (8번째 Ed, W. H. Freeman 2006) 페이지 814–815. ISBN0-7167-8759-8.
- ^ a b c Espenson, J. H. (2002). Chemical Kinetics and Reaction Mechanisms (2nd ed.). McGraw-Hill. pp. 127–132. ISBN 0072883626.
- ^ a b c d 키스 J. 라이들러 케미컬 키네틱스(3차 개정, 하퍼 및 행 1987) 페이지 283–285. ISBN 0-06-043862-2
- ^ Murdoch, Joseph R. (1981). "What is the rate-limiting step of a multistep reaction?". Journal of Chemical Education. 58 (1): 32–36. Bibcode:1981JChEd..58...32M. doi:10.1021/ed058p32.
- Zumdahl, Steven S. (2005). Chemical Principles (5th ed.). Houghton Mifflin. pp. 727–8. ISBN 0618372067.