슈퍼엔핸서
Super-enhancer유전학에서 초인공이란 세포 정체성에 관여하는 유전자의 전사를 촉진하기 위해 일련의 전사 인자 단백질에 의해 집합적으로 결합되는 여러 개의 진인공자로 구성된 포유류 게놈의 한 부분이다.[1][2][3]슈퍼엔핸서는 세포 정체성을 제어하고 정의하는 데 중요한 유전자 근처에서 자주 확인되기 때문에 세포 정체성을 조절하는 핵심 노드를 신속하게 식별하는 데 사용될 수 있다.[3][4]
Enhancer는 다양한 값의 범위를 갖는 수량화할 수 있는 몇 가지 특성을 가지고 있으며, 이러한 특성은 일반적으로 슈퍼 Enhancer에서 상승한다.슈퍼엔핸서들은 더 높은 수준의 전사를 조절하는 단백질에 구속되어 있고 더 고도로 표현되는 유전자와 연관되어 있다.[1][5][6][7]슈퍼엔핸서와 관련된 유전자의 표현은 특히 섭동에 민감하며, 이는 세포 상태 전환을 촉진하거나 슈퍼엔핸서의 민감성을 설명할 수 있다.[1][5][6][8][9]
역사
enhancer에 의한 전사 규제는 1980년대부터 연구되어 왔다.[10][11][12][13][14]로커스 제어 영역, 군집화된 개방형 규제 요소 및 전사 개시 플랫폼을 포함한 다양한 기계론적 특성을 가진 대형 또는 다중 구성요소 전사 규제 기관이 그 직후 관찰되었다.[15][16][17][18]보다 최근의 연구는 이러한 서로 다른 범주의 규제 요소들이 초인공제의 하위 유형을 나타낼 수 있다는 것을 시사했다.[3][19]
2013년, 두 개의 실험실에서 세포 정체성을 확립하는 데 특히 중요한 몇몇 유전자 근처에서 큰 증류제를 확인했다.리차드 A가 있는 동안. 젊은 사람들과 동료들은 슈퍼 엔핸서를, 프랜시스 콜린스와 동료들은 스트레치 엔핸서를 확인했다.[1][2]슈퍼엔핸서와 스트레치엔핸서 모두 세포 고유의 유전자를 조절하는 엔핸서 군집이며, 대부분 동의어일 수 있다.[2][20]
현재 정의된 바와 같이 영의 연구소에서 쥐 배아줄기세포(ESCs)에서 확인된 부위를 설명하기 위해 '초강제'라는 용어가 도입되었다.[1]이러한 특히 크고 강력한 강화제 부위는 10월 4일, 삭스2, 나노그, 클프4, 에스rb를 포함한 배아줄기세포 정체성을 확립하는 유전자를 제어하는 것으로 밝혀졌다.이러한 유전자와 연관된 초인공성자들의 섭동은 그들의 표적 유전자의 발현에 다양한 영향을 보여주었다.[20]슈퍼엔핸서들은 그 이후 마우스와 인체 조직 범위에서 세포 정체성 조절기 근처에서 확인되었다.[2][3][21][22][23][24][25][26][27][28][29][30][31][32][33][34][35][36][37]
함수
슈퍼엔핸서(super-enhancer)로 구성된 엔핸서(enhancer)는 전사 인자 단백질의 결합, 표적 유전자에 대한 루프, 전사 활성화 등 엔핸서(enhancer)의 기능을 공유한다.[1][3][19][20]슈퍼엔핸서들로 구성된 엔핸서들의 세 가지 주목할 만한 특성은 게놈 근접에서의 군집화, 전사 조절 단백질의 예외적인 신호, 그리고 상호간의 높은 물리적 상호작용이다.슈퍼엔핸서들로 구성된 엔핸서들의 DNA를 뒤엎는 것은 세포 정체성 유전자의 발현에 광범위한 영향을 보여주었고, 이는 성분 엔핸서들 사이의 복잡한 관계를 암시한다.[20]생쥐 배아 줄기세포의 핵 안에 있는 3차원(3차원)의 수십 메가바이트 성단으로 분리된 초인공학자.[38][39]
많은 전사 요소와 공동 인자 수준이 높은 것은 슈퍼엔핸서(예: CDK7, BRD4 및 중재자)에서 볼 수 있다.[1][3][5][6][8][9][19]이처럼 전사를 조절하는 단백질의 고농축은 왜 그들의 표적 유전자가 다른 종류의 유전자에 비해 고도로 표현되는 경향이 있는지를 시사한다.그러나 하우스키핑 유전자는 초인공성 유전자에 비해 표현력이 높은 경향이 있다.[1]
슈퍼엔핸서(super-enhancer)는 일련의 외부 신호에 반응하는 이들 유전자의 전사를 만들기 위해 핵심 세포 정체 유전자에서 진화했을 수 있다.[20]초진화제로 구성된 엔핸서들은 각각 다른 신호에 반응할 수 있으며, 이것은 단일 유전자의 전사가 다중 신호 경로에 의해 조절될 수 있도록 한다.[20]슈퍼엔핸서를 이용해 표적 유전자를 조절하는 것으로 보이는 경로로는 Wnt, TGFb, LIF, BDNF, NOGH 등이 있다.[20][40][41][42][43]슈퍼엔핸서들의 구성성분들은 긴 범위에 걸쳐 서로 그리고 그들의 목표 유전자와 물리적으로 상호작용한다.[7][22][44]주어진 세포 혈통의 기능에 결정적인 역할을 하여 주요 세포 표면 수용체의 발현을 조절하는 초인공도 규정되었다.이것은 특히 멤브레인 형태의 면역글로불린(Ig)의 발현에 의존하는 B-림프세포의 경우, 생존, 활성화 및 분화의 경우다.Ig 헤비 체인 로쿠스 슈퍼엔핸서는 여러 엔핸서를 포함하고 로쿠스의 몇 가지 주요한 수정(특히 체체 과부화, 클래스 스위치 재결합 및 로쿠스 자살 재결합)을 제어하는 매우 큰(25KB) 시스 규제 지역이다.
질병과의 관련성
초진동맥 내 돌연변이는 암, 제1형 당뇨병, 알츠하이머병, 루푸스, 류마티스 관절염, 다발성 경화증, 전신 경화증, 일차 담도경화증, 크론병, 그레이브스병, 바이틸리고, 심방세동 등 다양한 질환에서 두드러져 왔다.[2][3][6][25][32][35][45][46][47][48][49]스트레치 증진제에서도 질병과 관련된 시퀀스 변동의 유사한 농축이 관찰되었다.[2]
슈퍼엔핸서들은 암에서 유전자 발현을 잘못 조절하는 데 중요한 역할을 할 수 있다.종양 발달 동안, 종양 세포는 주요 종양 유전자에서 초진화기를 얻는데, 이것은 건강한 세포보다 더 높은 수준의 유전자의 전사를 촉진한다.[3][5][44][45][50][51][52][53][54][55][56][57][58][59]변형된 초인공 함수는 또한 염색질 조절기의 돌연변이에 의해 유도된다.[60]따라서 획득한 초엔하저는 진단과 치료 개입에 유용할 수 있는 바이오마커일 수 있다.[20]
슈퍼엔핸서들에서 농축된 단백질은 전사를 조절하는 단백질을 목표로 하고 암에 대항하여 배치된 작은 분자의 표적을 포함한다.[5][6][25][61]예를 들어, 슈퍼엔핸서들은 예외적인 양의 CDK7에 의존하고 있으며, 암에서는 세포가 CDK7 억제제 THZ1로 치료될 때 목표 유전자의 발현상실을 보고한다.[5][8][9][62]마찬가지로, 초진화제는 JQ1 소분자인 BRD4의 표적에서 농축되므로, JQ1을 이용한 치료는 초진화제-관련 유전자의 발현에서 예외적인 손실을 초래한다.[6]
식별
슈퍼 엔핸서는 Chip-Seq 신호에서 고농축 게놈 영역을 찾아 가장 일반적으로 식별되었다.마스터 전사 인자와 중재자 또는 BRD4와 같은 공동 인자를 대상으로 한 ChIP-Seq 실험이 사용되었지만 가장 많이 사용되는 것은 H3K27ac 표식 핵소체다.[1][3][6][63][64][65]프로그램 "ROSE"(Super-Enhancer의 순위 순서)는 Chip-Seq 데이터에서 슈퍼엔핸서를 식별하는 데 흔히 사용된다.이 프로그램은 이전에 식별된 진통제 부위를 꿰매고 이 봉합된 진통제들의 순위를 Chip-Seq 신호로 매긴다.[1]여러 개의 개별 Enhancer를 더 큰 영역으로 결합하기 위해 선택한 연결 거리는 다를 수 있다.진취제 활동의 일부 표지는 촉진제에서도 풍부하기 때문에, 유전자의 촉진제 내의 지역은 무시될 수 있다.ROSE는 진취제 활동의 표시에서 뛰어난 농축을 통해 일반 진취제와 슈퍼 엔핸서를 구분한다.호머는 초인공들을 식별할 수 있는 또 다른 도구다.[66]
참조
- ^ a b c d e f g h i j Whyte WA, Orlando DA, Hnisz D, Abraham BJ, Lin CY, Kagey MH, Rahl PB, Lee TI, Young RA (April 2013). "Master transcription factors and mediator establish super-enhancers at key cell identity genes". Cell. 153 (2): 307–19. doi:10.1016/j.cell.2013.03.035. PMC 3653129. PMID 23582322.
- ^ a b c d e f Parker SC, Stitzel ML, Taylor DL, Orozco JM, Erdos MR, Akiyama JA, van Bueren KL, Chines PS, Narisu N, Black BL, Visel A, Pennacchio LA, Collins FS (October 2013). "Chromatin stretch enhancer states drive cell-specific gene regulation and harbor human disease risk variants". Proceedings of the National Academy of Sciences of the United States of America. 110 (44): 17921–6. Bibcode:2013PNAS..11017921P. doi:10.1073/pnas.1317023110. PMC 3816444. PMID 24127591.
- ^ a b c d e f g h i Hnisz D, Abraham BJ, Lee TI, Lau A, Saint-André V, Sigova AA, Hoke HA, Young RA (November 2013). "Super-enhancers in the control of cell identity and disease". Cell. 155 (4): 934–47. doi:10.1016/j.cell.2013.09.053. PMC 3841062. PMID 24119843.
- ^ Saint-André V, Federation AJ, Lin CY, Abraham BJ, Reddy J, Lee TI, Bradner JE, Young RA (March 2016). "Models of human core transcriptional regulatory circuitries". Genome Research. 26 (3): 385–96. doi:10.1101/gr.197590.115. PMC 4772020. PMID 26843070.
- ^ a b c d e f Kwiatkowski N, Zhang T, Rahl PB, Abraham BJ, Reddy J, Ficarro SB, et al. (July 2014). "Targeting transcription regulation in cancer with a covalent CDK7 inhibitor" (PDF). Nature. 511 (7511): 616–20. Bibcode:2014Natur.511..616K. doi:10.1038/nature13393. PMC 4244910. PMID 25043025.
- ^ a b c d e f g Lovén J, Hoke HA, Lin CY, Lau A, Orlando DA, Vakoc CR, Bradner JE, Lee TI, Young RA (April 2013). "Selective inhibition of tumor oncogenes by disruption of super-enhancers". Cell. 153 (2): 320–34. doi:10.1016/j.cell.2013.03.036. PMC 3760967. PMID 23582323.
- ^ a b Dowen JM, Fan ZP, Hnisz D, Ren G, Abraham BJ, Zhang LN, Weintraub AS, Schuijers J, Lee TI, Zhao K, Young RA (October 2014). "Control of cell identity genes occurs in insulated neighborhoods in mammalian chromosomes". Cell. 159 (2): 374–87. doi:10.1016/j.cell.2014.09.030. PMC 4197132. PMID 25303531.
- ^ a b c Christensen CL, Kwiatkowski N, Abraham BJ, Carretero J, Al-Shahrour F, Zhang T, et al. (December 2014). "Targeting transcriptional addictions in small cell lung cancer with a covalent CDK7 inhibitor". Cancer Cell. 26 (6): 909–22. doi:10.1016/j.ccell.2014.10.019. PMC 4261156. PMID 25490451.
- ^ a b c Chipumuro E, Marco E, Christensen CL, Kwiatkowski N, Zhang T, Hatheway CM, Abraham BJ, Sharma B, Yeung C, Altabef A, Perez-Atayde A, Wong KK, Yuan GC, Gray NS, Young RA, George RE (November 2014). "CDK7 inhibition suppresses super-enhancer-linked oncogenic transcription in MYCN-driven cancer". Cell. 159 (5): 1126–39. doi:10.1016/j.cell.2014.10.024. PMC 4243043. PMID 25416950.
- ^ Banerji J, Rusconi S, Schaffner W (December 1981). "Expression of a beta-globin gene is enhanced by remote SV40 DNA sequences". Cell. 27 (2 Pt 1): 299–308. doi:10.1016/0092-8674(81)90413-x. PMID 6277502. S2CID 54234674.
- ^ Benoist C, Chambon P (March 1981). "In vivo sequence requirements of the SV40 early promoter region". Nature. 290 (5804): 304–10. Bibcode:1981Natur.290..304B. doi:10.1038/290304a0. PMID 6259538. S2CID 4263279.
- ^ Gruss P, Dhar R, Khoury G (February 1981). "Simian virus 40 tandem repeated sequences as an element of the early promoter". Proceedings of the National Academy of Sciences of the United States of America. 78 (2): 943–7. Bibcode:1981PNAS...78..943G. doi:10.1073/pnas.78.2.943. PMC 319921. PMID 6262784.
- ^ Evans T, Felsenfeld G, Reitman M (1990). "Control of globin gene transcription". Annual Review of Cell Biology. 6: 95–124. doi:10.1146/annurev.cb.06.110190.000523. PMID 2275826.
- ^ Cellier M, Belouchi A, Gros P (June 1996). "Resistance to intracellular infections: comparative genomic analysis of Nramp". Trends in Genetics. 12 (6): 201–4. doi:10.1016/0168-9525(96)30042-5. PMID 8928221.
- ^ Li Q, Peterson KR, Fang X, Stamatoyannopoulos G (November 2002). "Locus control regions". Blood. 100 (9): 3077–86. doi:10.1182/blood-2002-04-1104. PMC 2811695. PMID 12384402.
- ^ Grosveld F, van Assendelft GB, Greaves DR, Kollias G (December 1987). "Position-independent, high-level expression of the human beta-globin gene in transgenic mice". Cell. 51 (6): 975–85. doi:10.1016/0092-8674(87)90584-8. hdl:1765/2425. PMID 3690667. S2CID 1150699.
- ^ Gaulton KJ, Nammo T, Pasquali L, Simon JM, Giresi PG, Fogarty MP, et al. (March 2010). "A map of open chromatin in human pancreatic islets". Nature Genetics. 42 (3): 255–9. doi:10.1038/ng.530. PMC 2828505. PMID 20118932.
- ^ Koch F, Fenouil R, Gut M, Cauchy P, Albert TK, Zacarias-Cabeza J, Spicuglia S, de la Chapelle AL, Heidemann M, Hintermair C, Eick D, Gut I, Ferrier P, Andrau JC (August 2011). "Transcription initiation platforms and GTF recruitment at tissue-specific enhancers and promoters". Nature Structural & Molecular Biology. 18 (8): 956–63. doi:10.1038/nsmb.2085. PMID 21765417. S2CID 12778976.
- ^ a b c Pott S, Lieb JD (January 2015). "What are super-enhancers?". Nature Genetics. 47 (1): 8–12. doi:10.1038/ng.3167. PMID 25547603. S2CID 205349376.
- ^ a b c d e f g h Hnisz D, Schuijers J, Lin CY, Weintraub AS, Abraham BJ, Lee TI, Bradner JE, Young RA (April 2015). "Convergence of developmental and oncogenic signaling pathways at transcriptional super-enhancers". Molecular Cell. 58 (2): 362–70. doi:10.1016/j.molcel.2015.02.014. PMC 4402134. PMID 25801169.
- ^ Di Micco R, Fontanals-Cirera B, Low V, Ntziachristos P, Yuen SK, Lovell CD, et al. (October 2014). "Control of embryonic stem cell identity by BRD4-dependent transcriptional elongation of super-enhancer-associated pluripotency genes". Cell Reports. 9 (1): 234–47. doi:10.1016/j.celrep.2014.08.055. PMC 4317728. PMID 25263550.
- ^ a b Ji X, Dadon DB, Powell BE, Fan ZP, Borges-Rivera D, Shachar S, Weintraub AS, Hnisz D, Pegoraro G, Lee TI, Misteli T, Jaenisch R, Young RA (February 2016). "3D Chromosome Regulatory Landscape of Human Pluripotent Cells". Cell Stem Cell. 18 (2): 262–75. doi:10.1016/j.stem.2015.11.007. PMC 4848748. PMID 26686465.
- ^ Tsankov AM, Gu H, Akopian V, Ziller MJ, Donaghey J, Amit I, Gnirke A, Meissner A (February 2015). "Transcription factor binding dynamics during human ES cell differentiation". Nature. 518 (7539): 344–9. Bibcode:2015Natur.518..344T. doi:10.1038/nature14233. PMC 4499331. PMID 25693565.
- ^ Fang Z, Hecklau K, Gross F, Bachmann I, Venzke M, Karl M, Schuchhardt J, Radbruch A, Herzel H, Baumgrass R (November 2015). "Transcription factor co-occupied regions in the murine genome constitute T-helper-cell subtype-specific enhancers". European Journal of Immunology. 45 (11): 3150–7. doi:10.1002/eji.201545713. PMID 26300430.
- ^ a b c Vahedi G, Kanno Y, Furumoto Y, Jiang K, Parker SC, Erdos MR, Davis SR, Roychoudhuri R, Restifo NP, Gadina M, Tang Z, Ruan Y, Collins FS, Sartorelli V, O'Shea JJ (April 2015). "Super-enhancers delineate disease-associated regulatory nodes in T cells". Nature. 520 (7548): 558–62. Bibcode:2015Natur.520..558V. doi:10.1038/nature14154. PMC 4409450. PMID 25686607.
- ^ Koues OI, Kowalewski RA, Chang LW, Pyfrom SC, Schmidt JA, Luo H, Sandoval LE, Hughes TB, Bednarski JJ, Cashen AF, Payton JE, Oltz EM (January 2015). "Enhancer sequence variants and transcription-factor deregulation synergize to construct pathogenic regulatory circuits in B-cell lymphoma". Immunity. 42 (1): 186–98. doi:10.1016/j.immuni.2014.12.021. PMC 4302272. PMID 25607463.
- ^ Adam RC, Yang H, Rockowitz S, Larsen SB, Nikolova M, Oristian DS, Polak L, Kadaja M, Asare A, Zheng D, Fuchs E (May 2015). "Pioneer factors govern super-enhancer dynamics in stem cell plasticity and lineage choice". Nature. 521 (7552): 366–70. Bibcode:2015Natur.521..366A. doi:10.1038/nature14289. PMC 4482136. PMID 25799994.
- ^ Siersbæk R, Baek S, Rabiee A, Nielsen R, Traynor S, Clark N, Sandelin A, Jensen ON, Sung MH, Hager GL, Mandrup S (June 2014). "Molecular architecture of transcription factor hotspots in early adipogenesis". Cell Reports. 7 (5): 1434–42. doi:10.1016/j.celrep.2014.04.043. PMC 6360525. PMID 24857666.
- ^ Siersbæk R, Rabiee A, Nielsen R, Sidoli S, Traynor S, Loft A, La Cour Poulsen L, Rogowska-Wrzesinska A, Jensen ON, Mandrup S (June 2014). "Transcription factor cooperativity in early adipogenic hotspots and super-enhancers". Cell Reports. 7 (5): 1443–55. doi:10.1016/j.celrep.2014.04.042. PMID 24857652.
- ^ Harms MJ, Ishibashi J, Wang W, Lim HW, Goyama S, Sato T, et al. (April 2014). "Prdm16 is required for the maintenance of brown adipocyte identity and function in adult mice". Cell Metabolism. 19 (4): 593–604. doi:10.1016/j.cmet.2014.03.007. PMC 4012340. PMID 24703692.
- ^ Loft A, Forss I, Siersbæk MS, Schmidt SF, Larsen AS, Madsen JG, Pisani DF, Nielsen R, Aagaard MM, Mathison A, Neville MJ, Urrutia R, Karpe F, Amri EZ, Mandrup S (January 2015). "Browning of human adipocytes requires KLF11 and reprogramming of PPARγ superenhancers". Genes & Development. 29 (1): 7–22. doi:10.1101/gad.250829.114. PMC 4281566. PMID 25504365.
- ^ a b Pasquali L, Gaulton KJ, Rodríguez-Seguí SA, Mularoni L, Miguel-Escalada I, Akerman I, et al. (February 2014). "Pancreatic islet enhancer clusters enriched in type 2 diabetes risk-associated variants". Nature Genetics. 46 (2): 136–43. doi:10.1038/ng.2870. PMC 3935450. PMID 24413736.
- ^ Liu CF, Lefebvre V (September 2015). "The transcription factors SOX9 and SOX5/SOX6 cooperate genome-wide through super-enhancers to drive chondrogenesis". Nucleic Acids Research. 43 (17): 8183–203. doi:10.1093/nar/gkv688. PMC 4787819. PMID 26150426.
- ^ Ohba S, He X, Hojo H, McMahon AP (July 2015). "Distinct Transcriptional Programs Underlie Sox9 Regulation of the Mammalian Chondrocyte". Cell Reports. 12 (2): 229–43. doi:10.1016/j.celrep.2015.06.013. PMC 4504750. PMID 26146088.
- ^ a b Kaikkonen MU, Niskanen H, Romanoski CE, Kansanen E, Kivelä AM, Laitalainen J, Heinz S, Benner C, Glass CK, Ylä-Herttuala S (November 2014). "Control of VEGF-A transcriptional programs by pausing and genomic compartmentalization". Nucleic Acids Research. 42 (20): 12570–84. doi:10.1093/nar/gku1036. PMC 4227755. PMID 25352550.
- ^ Gosselin D, Link VM, Romanoski CE, Fonseca GJ, Eichenfield DZ, Spann NJ, Stender JD, Chun HB, Garner H, Geissmann F, Glass CK (December 2014). "Environment drives selection and function of enhancers controlling tissue-specific macrophage identities". Cell. 159 (6): 1327–40. doi:10.1016/j.cell.2014.11.023. PMC 4364385. PMID 25480297.
- ^ Sun J, Rockowitz S, Xie Q, Ashery-Padan R, Zheng D, Cvekl A (August 2015). "Identification of in vivo DNA-binding mechanisms of Pax6 and reconstruction of Pax6-dependent gene regulatory networks during forebrain and lens development". Nucleic Acids Research. 43 (14): 6827–46. doi:10.1093/nar/gkv589. PMC 4538810. PMID 26138486.
- ^ Beagrie RA, Scialdone A, Schueler M, Kraemer DC, Chotalia M, Xie SQ, Barbieri M, de Santiago I, Lavitas LM, Branco MR, Fraser J, Dostie J, Game L, Dillon N, Edwards PA, Nicodemi M, Pombo A (March 2017). "Complex multi-enhancer contacts captured by Genome Architecture Mapping (GAM)". Nature. 543 (7646): 519–524. doi:10.1038/nature21411. PMC 5366070. PMID 28273065.
- ^ Quinodoz SA, Ollikainen N, Tabak B, Palla A, Schmidt JM, Detmar E, Lai MM, Shishkin AA, Bhat P, Takei Y, Trinh V, Aznauryan E, Russell P, Cheng C, Jovanovic M, Chow A, Cai L, McDonel P, Garber M, Guttman M (June 2018). "Higher-Order Inter-chromosomal Hubs Shape 3D Genome Organization in the Nucleus". Cell. 174 (3): 744–757. doi:10.1016/j.cell.2018.05.024. PMC 6548320. PMID 29887377.
- ^ Joo JY, Schaukowitch K, Farbiak L, Kilaru G, Kim TK (January 2016). "Stimulus-specific combinatorial functionality of neuronal c-fos enhancers". Nature Neuroscience. 19 (1): 75–83. doi:10.1038/nn.4170. PMC 4696896. PMID 26595656.
- ^ Herranz D, Ambesi-Impiombato A, Palomero T, Schnell SA, Belver L, Wendorff AA, Xu L, Castillo-Martin M, Llobet-Navás D, Cordon-Cardo C, Clappier E, Soulier J, Ferrando AA (October 2014). "A NOTCH1-driven MYC enhancer promotes T cell development, transformation and acute lymphoblastic leukemia". Nature Medicine. 20 (10): 1130–7. doi:10.1038/nm.3665. PMC 4192073. PMID 25194570.
- ^ Wang H, Zang C, Taing L, Arnett KL, Wong YJ, Pear WS, Blacklow SC, Liu XS, Aster JC (January 2014). "NOTCH1-RBPJ complexes drive target gene expression through dynamic interactions with superenhancers". Proceedings of the National Academy of Sciences of the United States of America. 111 (2): 705–10. Bibcode:2014PNAS..111..705W. doi:10.1073/pnas.1315023111. PMC 3896193. PMID 24374627.
- ^ Yashiro-Ohtani Y, Wang H, Zang C, Arnett KL, Bailis W, Ho Y, et al. (November 2014). "Long-range enhancer activity determines Myc sensitivity to Notch inhibitors in T cell leukemia". Proceedings of the National Academy of Sciences of the United States of America. 111 (46): E4946-53. Bibcode:2014PNAS..111E4946Y. doi:10.1073/pnas.1407079111. PMC 4246292. PMID 25369933.
- ^ a b Hnisz D, Weintraub AS, Day DS, Valton AL, Bak RO, Li CH, Goldmann J, Lajoie BR, Fan ZP, Sigova AA, Reddy J, Borges-Rivera D, Lee TI, Jaenisch R, Porteus MH, Dekker J, Young RA (March 2016). "Activation of proto-oncogenes by disruption of chromosome neighborhoods". Science. 351 (6280): 1454–8. Bibcode:2016Sci...351.1454H. doi:10.1126/science.aad9024. PMC 4884612. PMID 26940867.
- ^ a b Mansour MR, Abraham BJ, Anders L, Berezovskaya A, Gutierrez A, Durbin AD, Etchin J, Lawton L, Sallan SE, Silverman LB, Loh ML, Hunger SP, Sanda T, Young RA, Look AT (December 2014). "Oncogene regulation. An oncogenic super-enhancer formed through somatic mutation of a noncoding intergenic element". Science. 346 (6215): 1373–7. doi:10.1126/science.1259037. PMC 4720521. PMID 25394790.
- ^ Cavalli G, Hayashi M, Jin Y, Yorgov D, Santorico SA, Holcomb C, Rastrou M, Erlich H, Tengesdal IW, Dagna L, Neff CP, Palmer BE, Spritz RA, Dinarello CA (February 2016). "MHC class II super-enhancer increases surface expression of HLA-DR and HLA-DQ and affects cytokine production in autoimmune vitiligo". Proceedings of the National Academy of Sciences of the United States of America. 113 (5): 1363–8. Bibcode:2016PNAS..113.1363C. doi:10.1073/pnas.1523482113. PMC 4747741. PMID 26787888.
- ^ Farh KK, Marson A, Zhu J, Kleinewietfeld M, Housley WJ, Beik S, Shoresh N, Whitton H, Ryan RJ, Shishkin AA, Hatan M, Carrasco-Alfonso MJ, Mayer D, Luckey CJ, Patsopoulos NA, De Jager PL, Kuchroo VK, Epstein CB, Daly MJ, Hafler DA, Bernstein BE (February 2015). "Genetic and epigenetic fine mapping of causal autoimmune disease variants". Nature. 518 (7539): 337–43. Bibcode:2015Natur.518..337F. doi:10.1038/nature13835. PMC 4336207. PMID 25363779.
- ^ Weinstein JS, Lezon-Geyda K, Maksimova Y, Craft S, Zhang Y, Su M, Schulz VP, Craft J, Gallagher PG (December 2014). "Global transcriptome analysis and enhancer landscape of human primary T follicular helper and T effector lymphocytes". Blood. 124 (25): 3719–29. doi:10.1182/blood-2014-06-582700. PMC 4263981. PMID 25331115.
- ^ Oldridge DA, Wood AC, Weichert-Leahey N, Crimmins I, Sussman R, Winter C, et al. (December 2015). "Genetic predisposition to neuroblastoma mediated by a LMO1 super-enhancer polymorphism". Nature. 528 (7582): 418–21. Bibcode:2015Natur.528..418O. doi:10.1038/nature15540. PMC 4775078. PMID 26560027.
- ^ Affer M, Chesi M, Chen WD, Keats JJ, Demchenko YN, Tamizhmani K, Garbitt VM, Riggs DL, Brents LA, Roschke AV, Van Wier S, Fonseca R, Bergsagel PL, Kuehl WM (August 2014). "Promiscuous MYC locus rearrangements hijack enhancers but mostly super-enhancers to dysregulate MYC expression in multiple myeloma". Leukemia. 28 (8): 1725–35. doi:10.1038/leu.2014.70. PMC 4126852. PMID 24518206.
- ^ Drier Y, Cotton MJ, Williamson KE, Gillespie SM, Ryan RJ, Kluk MJ, et al. (March 2016). "An oncogenic MYB feedback loop drives alternate cell fates in adenoid cystic carcinoma". Nature Genetics. 48 (3): 265–72. doi:10.1038/ng.3502. PMC 4767593. PMID 26829750.
- ^ Northcott PA, Lee C, Zichner T, Stütz AM, Erkek S, Kawauchi D, et al. (July 2014). "Enhancer hijacking activates GFI1 family oncogenes in medulloblastoma". Nature. 511 (7510): 428–34. Bibcode:2014Natur.511..428N. doi:10.1038/nature13379. PMC 4201514. PMID 25043047.
- ^ Walker BA, Wardell CP, Brioli A, Boyle E, Kaiser MF, Begum DB, Dahir NB, Johnson DC, Ross FM, Davies FE, Morgan GJ (14 March 2014). "Translocations at 8q24 juxtapose MYC with genes that harbor superenhancers resulting in overexpression and poor prognosis in myeloma patients". Blood Cancer Journal. 4 (3): e191. doi:10.1038/bcj.2014.13. PMC 3972699. PMID 24632883.
- ^ Gröschel S, Sanders MA, Hoogenboezem R, de Wit E, Bouwman BA, Erpelinck C, et al. (April 2014). "A single oncogenic enhancer rearrangement causes concomitant EVI1 and GATA2 deregulation in leukemia". Cell. 157 (2): 369–81. doi:10.1016/j.cell.2014.02.019. PMID 24703711.
- ^ Shi J, Whyte WA, Zepeda-Mendoza CJ, Milazzo JP, Shen C, Roe JS, et al. (December 2013). "Role of SWI/SNF in acute leukemia maintenance and enhancer-mediated Myc regulation". Genes & Development. 27 (24): 2648–62. doi:10.1101/gad.232710.113. PMC 3877755. PMID 24285714.
- ^ Kennedy AL, Vallurupalli M, Chen L, Crompton B, Cowley G, Vazquez F, Weir BA, Tsherniak A, Parasuraman S, Kim S, Alexe G, Stegmaier K (October 2015). "Functional, chemical genomic, and super-enhancer screening identify sensitivity to cyclin D1/CDK4 pathway inhibition in Ewing sarcoma". Oncotarget. 6 (30): 30178–93. doi:10.18632/oncotarget.4903. PMC 4745789. PMID 26337082.
- ^ Tomazou EM, Sheffield NC, Schmidl C, Schuster M, Schönegger A, Datlinger P, Kubicek S, Bock C, Kovar H (February 2015). "Epigenome mapping reveals distinct modes of gene regulation and widespread enhancer reprogramming by the oncogenic fusion protein EWS-FLI1". Cell Reports. 10 (7): 1082–95. doi:10.1016/j.celrep.2015.01.042. PMC 4542316. PMID 25704812.
- ^ Nabet B, Ó Broin P, Reyes JM, Shieh K, Lin CY, Will CM, Popovic R, Ezponda T, Bradner JE, Golden AA, Licht JD (August 2015). "Deregulation of the Ras-Erk Signaling Axis Modulates the Enhancer Landscape". Cell Reports. 12 (8): 1300–13. doi:10.1016/j.celrep.2015.06.078. PMC 4551578. PMID 26279576.
- ^ Zhang X, Choi PS, Francis JM, Imielinski M, Watanabe H, Cherniack AD, Meyerson M (February 2016). "Identification of focally amplified lineage-specific super-enhancers in human epithelial cancers". Nature Genetics. 48 (2): 176–82. doi:10.1038/ng.3470. PMC 4857881. PMID 26656844.
- ^ Hodges HC, Stanton BZ, Cermakova K, Chang CY, Miller EL, Kirkland JG, Ku WL, Veverka V, Zhao K, Crabtree GR (January 2018). "Dominant-negative SMARCA4 mutants alter the accessibility landscape of tissue-unrestricted enhancers". Nature Structural & Molecular Biology. 25 (1): 61–72. doi:10.1038/s41594-017-0007-3. PMC 5909405. PMID 29323272.
- ^ Porcher C (April 2015). "Toward a BETter grasp of acetyl-lysine readers". Blood. 125 (18): 2739–41. doi:10.1182/blood-2015-03-630830. PMID 25931578.
- ^ Wang Y, Zhang T, Kwiatkowski N, Abraham BJ, Lee TI, Xie S, Yuzugullu H, Von T, Li H, Lin Z, Stover DG, Lim E, Wang ZC, Iglehart JD, Young RA, Gray NS, Zhao JJ (September 2015). "CDK7-dependent transcriptional addiction in triple-negative breast cancer". Cell. 163 (1): 174–86. doi:10.1016/j.cell.2015.08.063. PMC 4583659. PMID 26406377.
- ^ Wei Y, Zhang S, Shang S, Zhang B, Li S, Wang X, Wang F, Su J, Wu Q, Liu H, Zhang Y (January 2016). "SEA: a super-enhancer archive". Nucleic Acids Research. 44 (D1): D172-9. doi:10.1093/nar/gkv1243. PMC 4702879. PMID 26578594.
- ^ Khan A, Zhang X (January 2016). "dbSUPER: a database of super-enhancers in mouse and human genome". Nucleic Acids Research. 44 (D1): D164-71. doi:10.1093/nar/gkv1002. PMC 4702767. PMID 26438538.
- ^ Creyghton MP, Cheng AW, Welstead GG, Kooistra T, Carey BW, Steine EJ, Hanna J, Lodato MA, Frampton GM, Sharp PA, Boyer LA, Young RA, Jaenisch R (December 2010). "Histone H3K27ac separates active from poised enhancers and predicts developmental state". Proceedings of the National Academy of Sciences of the United States of America. 107 (50): 21931–6. doi:10.1073/pnas.1016071107. PMC 3003124. PMID 21106759.
- ^ Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, Cheng JX, Murre C, Singh H, Glass CK (May 2010). "Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities". Molecular Cell. 38 (4): 576–89. doi:10.1016/j.molcel.2010.05.004. PMC 2898526. PMID 20513432.