가장 무거운 요소 소개
Introduction to the heaviest elements외부 영상 | |
---|---|
![]() |
가장 무거운[a] 원자핵은 크기가[b] 같지 않은 두 개의 다른 핵들을 하나로 결합하는 핵 반응에서 생성된다; 대략 질량 면에서 두 핵이 더 불평등할수록 두 핵이 반응할 가능성이 더 크다.[7]더 무거운 핵으로 만들어진 물질은 표적으로 만들어지고, 그 다음에는 더 가벼운 핵의 빔에 의해 폭격된다.두 개의 핵은 서로 충분히 가까이 접근해야만 하나로 융합할 수 있다; 보통 핵은 정전기적 반발로 인해 서로 밀어낸다.강한 상호작용은 이러한 반발력을 극복할 수 있지만 핵으로부터 매우 짧은 거리 내에서만 가능하다. 따라서 빔 핵은 빔 핵의 속도에 비해 그러한 반발력을 경미하게 만들기 위해 크게 가속된다.[8]가까이 오는 것만으로 두 개의 핵이 융합되기에는 충분하지 않다: 두 개의 핵이 서로 접근할 때, 그들은 보통−20 10초 정도 함께 있다가 하나의 핵을 형성하기보다는 (반작용 전과 동일한 구성으로 반드시 존재하는 것은 아니다) 부분적인 방법들을 (반작용 전과 같은 구성으로) 유지한다.[8][9]만약 핵융합이 일어난다면, 복합핵이라고 불리는 일시적인 합병은 흥분된 상태일 것이다.혼합핵은 흥분 에너지를 잃고 보다 안정된 상태에 도달하기 위해 한 개 또는 여러 개의 중성자를 방출하거나 배출하는데,[c] 이 중성자는 에너지를 운반한다.이는 최초 충돌 후 약 10초−16 후에 발생한다.[10][d]
빔은 표적을 통과하여 다음 방인 분리기에 도달한다. 새로운 핵이 생성되면 이 빔과 함께 운반된다.[13]분리기에서 새로 생성된 핵은 다른 핵종(원래 빔과 다른 반응 제품의 핵)[e]에서 분리되어 표면 배리어 검출기로 전달되며, 이는 핵이 정지한다.검출기에 대한 다음 충격의 정확한 위치가 표시되며, 에너지 및 도착 시간도 표시된다.[13]전달은 약 10초−6 정도 걸린다. 감지되기 위해서는 핵이 이만큼 오래 살아남아야 한다.[16]핵은 붕괴가 등록되면 다시 기록되며, 위치, 에너지, 붕괴 시간을 측정한다.[13]
핵의 안정성은 강한 상호작용에 의해 제공된다.그러나, 그것의 범위는 매우 짧다; 핵이 커질수록, 가장 바깥쪽 핵에 대한 영향력은 약해진다.동시에 핵은 사정거리가 무제한이어서 양성자 사이의 정전기적 반발에 의해 갈라진다.[17]따라서 가장 무거운 원소의 핵은 이론적으로 예측되며[18] 지금까지 알파 붕괴와 자발적 핵분열이라는 그러한 반발에 의해 야기되는 붕괴 모드를 통해 주로 붕괴되는 것으로 관찰되어[19] 왔다.[f] 이러한 모드는 초중량 원소의 핵에 지배적이다.알파 해독은 방출된 알파 입자에 의해 등록되며, 붕괴 산물은 실제 붕괴 전에 결정하기 쉽다. 만약 그러한 붕괴나 연속적인 해독이 알려진 핵을 생성한다면, 반응의 원래 산술적으로 결정할 수 있다.[g]그러나 자발적 핵분열은 다양한 핵들을 생산물로 생산하기 때문에 원래의 핵종들은 딸들로부터 결정될 수 없다.[h]
따라서 가장 무거운 원소 중 하나를 합성하려는 물리학자들이 이용할 수 있는 정보는 검출기에서 수집된 정보, 즉 검출기에 입자가 도달한 위치, 에너지 및 시간, 그리고 검출기의 붕괴 시간이다.물리학자들은 이 자료를 분석하여 그것이 정말로 새로운 원소에 의해 야기된 것이며 주장했던 것과 다른 핵종에 의해 야기되었을 수 없다는 결론을 내리려고 한다.제공된 데이터는 새로운 요소가 확실히 생성되었다는 결론에 불충분하며 관측된 효과에 대한 다른 설명이 없다. 데이터 해석에 오류가 발생하였다.[i]
메모들
- ^ 핵물리학에서 원소의 원자 번호가 높으면 무거운 원소라고 부른다. 납(원소 82)은 그러한 무거운 원소의 한 예다.용어"초중 원소의 요소"일반적으로 원자 번호와 요소 더 큰 것보다 103(비록 다른 정의, 같은 원자 번호 이상 100[2]이나 112로의;[3]가끔, 그 용어는 제시된 등가는 용어"초 악티 니드의",을 상한 연령을 정하기 전에 시작의 가정적인 superactinide serie.s).[4]용어 "중량 동위원소"(주어진 원소의)와 "중량 핵"은 공통 언어에서 이해할 수 있는 것, 즉 (주어진 원소의 경우) 고질량의 등가선 및 고질량의 핵이다.
- ^ 2009년, 오가네시안이 이끄는 JINR의 팀은 대칭 Xe + Xe 반응으로 하시를 생성하려는 시도 결과를 발표했다.그들은 그러한 반응에서 단 하나의 원자도 관찰하지 못하여, 핵반응 확률의 척도인 단면(단면)에 상한선을 2.5 pb로 두었다.[5]이에 비해 하시움 발견을 초래한 반응인 Pb + Fe는 발견자가 추산한 바와 같이 ~20 pb(더 구체적으로는 19+19
−11 pb)의 단면을 가지고 있었다.[6] - ^ 흥분 에너지가 클수록 중성자가 더 많이 배출된다.흥분 에너지가 각 중성자를 핵의 나머지 부분에 결합하는 에너지보다 낮으면 중성자가 방출되지 않고, 대신 복합핵은 감마선을 방출하여 탈제약한다.[10]
- ^ IUPAC/IUPAP 공동작업당의 정의에 따르면 화학원소의 핵이−14 10초 이내에 붕괴되지 않은 경우에만 화학원소가 발견되었다고 인정할 수 있다.이 값은 핵이 외부 전자를 획득하여 화학적 특성을 나타내는 데 걸리는 시간의 추정치로 선택되었다.[11]이 수치는 또한 복합핵의 수명에 대해 일반적으로 허용되는 상한선을 나타낸다.[12]
- ^ 이 분리는 결과 핵이 비작동 빔 핵보다 더 천천히 대상을 지나 이동한다는 것에 기초한다.분리기는 이동 입자에 대한 영향이 입자의 특정 속도에 대해 취소되는 전기장과 자기장을 포함한다.[14]이러한 분리는 또한 비행 시간 측정과 반동 에너지 측정의 도움을 받을 수 있다. 두 가지를 조합하면 핵의 질량을 추정할 수 있다.[15]
- ^ 모든 붕괴 모드가 정전기적 반발에 의해 야기되는 것은 아니다.예를 들어 베타 붕괴는 약한 상호작용에 의해 발생한다.[20]
- ^ 핵의 질량은 직접 측정되지 않고 오히려 다른 핵의 질량으로부터 계산되기 때문에, 그러한 측정을 간접 측정이라고 한다.직접 측정도 가능하지만, 대부분의 부분에서는 무거운 핵에 사용할 수 없는 상태로 남아 있다.[21]초중핵 질량의 첫 직접 측정은 2018년 LBNL에서 보고되었다.[22] 질량은 전달 후 핵의 위치로부터 결정되었다(이 위치는 자석이 있는 곳에서 전달되었기 때문에 핵의 질량 대 충전 비율과 연결된 궤적을 결정하는 것을 돕는다).[23]
- ^ 자발적 핵분열은 JINR의 대표적인 과학자인 [24]소련의 물리학자 게오르기 플레로프에 의해 발견되었고, 따라서 이 시설을 위한 '호비호스'가 되었다.[25]대조적으로, LBL 과학자들은 핵분열 정보가 원소의 합성에 대한 주장에 충분하지 않다고 믿었다.그들은 복합핵이 양성자나 알파 입자와 같은 전하를 띤 입자가 아닌 중성자만 배출하였다는 것을 규명하는 어려움이 있었기 때문에, 자발적 핵분열이 새로운 원소의 식별에 사용될 만큼 충분히 연구되지 않았다고 믿었다.[12]따라서 그들은 새로운 동위원소를 이미 알려진 동위원소와 연속적인 알파 데이에 의해 연계하는 것을 선호했다.[24]
- ^ 예를 들어, 102 원소는 1957년 스웨덴 스톡홀름 카운티 스톡홀름의 노벨 물리학 연구소에서 잘못 식별되었다.[26]이 원소의 창조에 대한 이전의 결정적인 주장은 없었고, 그 원소는 스웨덴, 미국, 영국의 발견자들인 노벨륨에 의해 이름을 부여받았다.나중에 그 식별이 잘못되었다는 것이 밝혀졌다.[27]이듬해 LBNL은 스웨덴의 결과를 재현할 수 없었고 대신 원소의 합성을 발표했는데, 그 주장도 나중에 반증되었다.[27]JINR은 그들이 원소를 처음 창조했다고 주장하면서 새로운 원소인 졸리오튬을 위해 그들 자신의 이름을 제안했고,[28] 소련 이름 또한 받아들여지지 않았다(이후 JINR은 102 원소의 이름을 "맛있는"[29] 것으로 지칭했다)."노벨륨"이라는 명칭은 널리 쓰이기 때문에 변함이 없었다.[30]
참조
- ^ Wakhle, A.; Simenel, C.; Hinde, D. J.; et al. (2015). Simenel, C.; Gomes, P. R. S.; Hinde, D. J.; et al. (eds.). "Comparing Experimental and Theoretical Quasifission Mass Angle Distributions". European Physical Journal Web of Conferences. 86: 00061. Bibcode:2015EPJWC..8600061W. doi:10.1051/epjconf/20158600061. ISSN 2100-014X.
- ^ Krämer, K. (2016). "Explainer: superheavy elements". Chemistry World. Retrieved 2020-03-15.
- ^ "Discovery of Elements 113 and 115". Lawrence Livermore National Laboratory. Archived from the original on 2015-09-11. Retrieved 2020-03-15.
- ^ Eliav, E.; Kaldor, U.; Borschevsky, A. (2018). "Electronic Structure of the Transactinide Atoms". In Scott, R. A. (ed.). Encyclopedia of Inorganic and Bioinorganic Chemistry. John Wiley & Sons. pp. 1–16. doi:10.1002/9781119951438.eibc2632. ISBN 978-1-119-95143-8.
- ^ Oganessian, Yu. Ts.; Dmitriev, S. N.; Yeremin, A. V.; et al. (2009). "Attempt to produce the isotopes of element 108 in the fusion reaction 136Xe + 136Xe". Physical Review C. 79 (2): 024608. doi:10.1103/PhysRevC.79.024608. ISSN 0556-2813.
- ^ Münzenberg, G.; Armbruster, P.; Folger, H.; et al. (1984). "The identification of element 108" (PDF). Zeitschrift für Physik A. 317 (2): 235–236. Bibcode:1984ZPhyA.317..235M. doi:10.1007/BF01421260. Archived from the original (PDF) on 7 June 2015. Retrieved 20 October 2012.
- ^ Subramanian, S. (2019). "Making New Elements Doesn't Pay. Just Ask This Berkeley Scientist". Bloomberg Businessweek. Retrieved 2020-01-18.
- ^ a b Ivanov, D. (2019). "Сверхтяжелые шаги в неизвестное" [Superheavy steps into the unknown]. N+1 (in Russian). Retrieved 2020-02-02.
- ^ Hinde, D. (2014). "Something new and superheavy at the periodic table". The Conversation. Retrieved 2020-01-30.
- ^ a b Krása, A. (2010). "Neutron Sources for ADS" (PDF). Czech Technical University in Prague. pp. 4–8. Archived from the original (PDF) on 2019-03-03. Retrieved October 20, 2019.
- ^ Wapstra, A. H. (1991). "Criteria that must be satisfied for the discovery of a new chemical element to be recognized" (PDF). Pure and Applied Chemistry. 63 (6): 883. doi:10.1351/pac199163060879. ISSN 1365-3075. Retrieved 2020-08-28.
- ^ a b Hyde, E. K.; Hoffman, D. C.; Keller, O. L. (1987). "A History and Analysis of the Discovery of Elements 104 and 105". Radiochimica Acta. 42 (2): 67–68. doi:10.1524/ract.1987.42.2.57. ISSN 2193-3405.
- ^ a b c Chemistry World (2016). "How to Make Superheavy Elements and Finish the Periodic Table [Video]". Scientific American. Retrieved 2020-01-27.
- ^ 호프만, 기오르소 & 시보르그 2000 페이지 334.
- ^ 호프만, 기오르소 & 시보르그 2000 페이지 335.
- ^ 자그레배프, 카르포프 & 그리너 2013, 페이지 3.
- ^ Beiser 2003, 페이지 432.
- ^ Staszczak, A.; Baran, A.; Nazarewicz, W. (2013). "Spontaneous fission modes and lifetimes of superheavy elements in the nuclear density functional theory". Physical Review C. 87 (2): 024320–1. arXiv:1208.1215. Bibcode:2013PhRvC..87b4320S. doi:10.1103/physrevc.87.024320. ISSN 0556-2813.
- ^ 아우디 외 2017, 페이지 030001-128–030001-138.
- ^ Beiser 2003, 페이지 439.
- ^ Oganessian, Yu. Ts.; Rykaczewski, K. P. (2015). "A beachhead on the island of stability". Physics Today. 68 (8): 32–38. Bibcode:2015PhT....68h..32O. doi:10.1063/PT.3.2880. ISSN 0031-9228. OSTI 1337838.
- ^ Grant, A. (2018). "Weighing the heaviest elements". Physics Today. doi:10.1063/PT.6.1.20181113a.
- ^ Howes, L. (2019). "Exploring the superheavy elements at the end of the periodic table". Chemical & Engineering News. Retrieved 2020-01-27.
- ^ a b Robinson, A. E. (2019). "The Transfermium Wars: Scientific Brawling and Name-Calling during the Cold War". Distillations. Retrieved 2020-02-22.
- ^ "Популярнаябиблиотека химических элементов.화학적 원소들 Сиборгий(экавольфрам)"는 경우에는 인기 있는 도서관이다.시보귬(eka-tungsten)].n-t.ru(러시아어로).2020-01-07 Retrieved."Экавольфрам"[Eka-tungsten]에서 Reprinted.Популярнаябиблиотека химических элементов.Серебро — Нильсборий и далее는 경우에는 인기 있는 도서관의 화학적 요소.nielsbohrium과 -RSB-(러시아어로)그 이후에도 실버.Nauka.1977년.
- ^ "Nobelium – Element information, properties and uses Periodic Table". Royal Society of Chemistry. Retrieved 2020-03-01.
- ^ a b 크래그 2018, 페이지 38~39.
- ^ 크래그 2018, 페이지 40.
- ^ Ghiorso, A.; Seaborg, G. T.; Oganessian, Yu. Ts.; et al. (1993). "Responses on the report 'Discovery of the Transfermium elements' followed by reply to the responses by Transfermium Working Group" (PDF). Pure and Applied Chemistry. 65 (8): 1815–1824. doi:10.1351/pac199365081815. Archived (PDF) from the original on 25 November 2013. Retrieved 7 September 2016.
- ^ Commission on Nomenclature of Inorganic Chemistry (1997). "Names and symbols of transfermium elements (IUPAC Recommendations 1997)" (PDF). Pure and Applied Chemistry. 69 (12): 2471–2474. doi:10.1351/pac199769122471.
참고 문헌 목록
- Audi, G.; Kondev, F. G.; Wang, M.; et al. (2017). "The NUBASE2016 evaluation of nuclear properties". Chinese Physics C. 41 (3). 030001. Bibcode:2017ChPhC..41c0001A. doi:10.1088/1674-1137/41/3/030001.
페이지 030001-1–030001-17, 페이지 030001-18–030001-138, 표 I. NUBASE2016 핵 및 붕괴 특성 표 - Beiser, A. (2003). Concepts of modern physics (6th ed.). McGraw-Hill. ISBN 978-0-07-244848-1. OCLC 48965418.
- Hoffman, D. C.; Ghiorso, A.; Seaborg, G. T. (2000). The Transuranium People: The Inside Story. World Scientific. ISBN 978-1-78-326244-1.
- Kragh, H. (2018). From Transuranic to Superheavy Elements: A Story of Dispute and Creation. Springer. ISBN 978-3-319-75813-8.
- Zagrebaev, V.; Karpov, A.; Greiner, W. (2013). "Future of superheavy element research: Which nuclei could be synthesized within the next few years?". Journal of Physics: Conference Series. 420 (1): 012001. arXiv:1207.5700. Bibcode:2013JPhCS.420a2001Z. doi:10.1088/1742-6596/420/1/012001. ISSN 1742-6588.