리본 이론

Ribbon theory

리본 이론DNA와 관련하여 특정한 응용을 보아온 위상 내 수학의 한 가닥이다.[1]

개념

Gheorghe Călugăreanu의 작품, James H. 흰색, 그리고 F. 브록 풀러는 크뤼그레아누-로 이어졌다.링크 = Writhe +[2][3] 트위스트인 화이트-풀러 정리

참고 항목

참조

  • Adams, Colin (2004), The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots, American Mathematical Society, ISBN 0-8218-3678-1, MR 2079925
  • Călugăreanu, Gheorghe (1959), "L'intégrale de Gauss et l'analyse des nœuds tridimensionnels", Revue de Mathématiques Pure et Appliquées, 4: 5–20, MR 0131846
  • Călugăreanu, Gheorghe (1961), "Sur les classes d'isotopie des noeuds tridimensionels et leurs invariants", Czechoslovak Mathematical Journal, 11: 588–625, doi:10.21136/CMJ.1961.100486, MR 0149378
  • Fuller, F. Brock (1971), "The writhing number of a space curve", Proceedings of the National Academy of Sciences of the United States of America, 68 (4): 815–819, doi:10.1073/pnas.68.4.815, MR 0278197, PMC 389050, PMID 5279522
  • White, James H. (1969), "Self-linking and the Gauss integral in higher dimensions", American Journal of Mathematics, 91 (3): 693–728, doi:10.2307/2373348, JSTOR 2373348, MR 0253264

메모들

  1. ^ Vologodskiǐ, Aleksandr Vadimovich (1992). Topology and Physics of Circular DNA (First ed.). Boca Raton, FL. p. 49. ISBN 978-1138105058. OCLC 1014356603.
  2. ^ Dennis, Mark R.; Hannay, J.H (2005). "Geometry of Călugăreanu's theorem". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 461 (2062): 3245–3254. doi:10.1098/rspa.2005.1527. MR 2172227. S2CID 17766229.
  3. ^ Dennis, Mark. "The geometry of twisted ribbons". University of Bristol. Archived from the original on 3 May 2009. Retrieved 18 July 2010.