인공효소

Artificial enzyme
인공인산화효소의 도식도면

인공 효소는 합성 유기 분자 또는 이온으로 효소의 일부 기능을 재창조한다. 그 부위는 많은 효소에서 관찰된 속도와 선택성에 따라 촉매제 투여를 약속한다.

역사

화학 반응의 효소 촉매제는 높은 선택성과 비율로 발생한다. 기질은 활성 부위라고 불리는 효소의 고분자의 작은 부분에서 활성화된다. 거기서 효소의 기능 그룹에 가까운 기질을 결합하면 소위 근접 효과에 의한 촉매작용을 일으킨다. 기질 결합을 촉매 기능 그룹과 결합하면 작은 분자로부터 유사한 촉매들을 만들어낼 수 있다. 고전적인 인공 효소는 사이클로덱스트린, 크라운 에테르, 칼릭사렌과 같은 수용체를 이용하여 기판을 결합시킨다.[1][2]

아미노산이나 펩타이드를 특징적인 분자모이티로 하는 인공효소들은 인공효소나 효소모방식의 영역을 확장시켰다. 예를 들어 비계 히스티딘 잔류물은 헤모시아닌, 티로시나아제, 카테콜 산화효소 등과 같은 특정 금속단백질 및 -엔자임을 모방한다.[3]

인공 효소는 로제타를 이용한 계산 전략을 통해 처음부터 설계되었다.[4] 2014년 12월 자연 어디에서도 발생하지 않는 인공 분자로 만든 활성 효소가 생산됐다는 발표가 있었다.[5] 2016년에는 '인공효소: 다음 물결"이 출판되었다.[6]

나노자메스

나노진은 효소 같은 특성을 가진 나노물질이다.[7][8] 바이오센싱, 바이오이미징, 종양진단 및 치료, 항균풀링 등 다양한 용도에 대해 폭넓게 연구되어 왔다.[9][6][10][11][12]

1990년대

1996년과 1997년에 듀간 외 연구진은 풀레렌 파생상품의 활동을 모방하는 과산화질소 분해효소(SOD)를 발견했다.[13][14]

2000년대

2005년 '짧은 리뷰' 기사가 나왔다.[15] '일부 기능성 나노입자의 뛰어난 촉매 효율'에 근거해 '나노자임'이라는 용어가 '촉매 폴리머(합성물질)의 활성과 아날로그' 때문이라고 풀이했다. 이 용어는 플라비오 마네아, 플로렌스 보다르 후이론, 루시아 파스콰토, 파올로 스크리민에 의해 전년에 만들어졌다.[16] 2006년, 랫드 실험에서 나노세균2(, CeO 나노입자)이 세포내 과산화물(독성 활성산소 매개체)에 의해 유도된 망막 변성을 방지하는 것으로 보고되었다.[17] 이것은 실명의 원인에 대한 궁극적인 치료로 가는 가능한 경로를 나타내는 것으로 보였다.[18] 2007년 옌시윤과 동료들은 강자성 나노입자의 내인성 과산화효소 유사 활성을 의학, 환경화학 등 광범위한 응용을 제안하는 것으로 보고했으며, 저자들은 이 성질을 바탕으로 면역분석 결과를 보고했다.[19][20] 후이웨이와 에르캉 왕(2008)은 쉽게 준비된 자기 나노입자(MNP)의 이 모사적 특성을 이용하여 생체 활성 분자에 대한 분석적 적용을 시연했으며 과산화수소에 대한 색도측정분석(HO
2

2
)과 포도당 검출에 대한 민감하고 선택적인 플랫폼을 설명했다.[21]

2010년대

2016년 현재 다양한 저널에 리뷰 기사가 매년 등장하고 있다.[22][23][24][25][26][27][28][29][30][31][32][33][34] 2015년 '인공효소 연구 맥락에서 넓은 나노자 초상화'[35]를 제공한다고 설명한 장편 치료법이 등장했고, 2016년 중국 저서 '엔자임 엔지니어링'에는 '나노자'에 관한 장이 수록됐다.[36]

각기 다른 준비물에서 과산화수소 마임증의 색도 적용은 2010년과 2011년에 보고되었으며, 각각 포도당(카복실 개량 그래핀 산화물)[37]과 단일 뉴클레오티드 다형성(헤민-그래핀 하이브리드 나노시트를 통한, 라벨링 없음)[38]을 검출했으며, 비용과 편의성 모두에서 장점을 가지고 있다. 종양 조직을 시각화하기 위한 색상의 사용은 2012년에 보고되었는데, 암 세포를 인식하고 그것들과 결합하는 단백질로 코팅된 MNP의 과산화수소효소 마메시스를 사용했다.[39]

또한 2012년에는 오산화 바나듐 나노와이어(바나디아, VO25)가 생태학적 편익이 기대되는 바나듐 할로페록시디아제를 모방하여 해양 바이오풀링을 억제하는 것으로 나타났다.[40] 2년 후 다른 센터의 한 연구는 VO가25 체내 포유류 세포에서 글루타티온느 과산화효소를 흉내 낸다고 보고했는데, 이는 향후 치료적 응용을 시사한다.[41] 같은 해인 2014년 파킨슨병의 생체내 영장류 모델에서 카르복실화 풀레렌(C3)이 신경보호성 후상이라는 보고가 있었다.[42]

2015년에는 경쟁 게스트 종에 의해 제어되는 게이트키핑 수용체 분자에 따라 수문 금 나노입자의 단층 내에 나노입자를 캡슐화하거나 세포질로부터 분리하거나 접근을 허용하는 것을 기초로 과도 금속 나노형의 생체직교적 조절을 위해 초분자 나노입자를 제안하였다. 이 장치는 생체모방 크기의 것으로서 생세포 내에서 성공적이었다고 보고되었으며, 친혈소판프로드러브 활성화 프로세스를 제어하며, 영상촬영 및 치료용으로 제안되었다.[43][44] Cu(OH)
2
슈퍼케이지 생산을 위한 손쉬운 공정이 보고되었고, 그들의 내적인 과산화수소효소-미믹리(peroxidase-mimicry)에 대한 시연도 보고되었다.[45]
비계형 "INAzyme"("통합 나노자") 배열이 설명되었으며, 포도당 산화효소(GOx)를 포함한 헤민(과산화효소 모사)을 서브미크론 가까이 위치시켜 뇌세포 포도당을 동적으로 모니터링하는 것으로 보고된 빠르고 효율적인 효소 캐스케이드를 제공했다.[46] 이온화 수화 안정화 콜로이드 나노입자의 방법이 수성분포에서 효소 흉내를 확인하면서 설명되었다.[47]

서부 아프리카에서 에볼라 바이러스에 대한 MNP 강화 급속 저비용 스트립 테스트에 대한 현장 테스트가 발표되었다.[48][49] HO
2
2 나노세균에 흡착된 라벨 DNA를 용액으로 대체하여 감도가 높은 포도당 검사를 제공하는 것으로 보고되었다.[50]
산화효소성 나노세균은 자가조절 바이오아세이를 개발하는 데 사용되어 왔다.[51] 프러시아 블루를 모방한 멀티엔자임(Multi-enzyme)이 치료용으로 개발됐다.[52] MOF 기반 효소 모방에 대한 리뷰가 발표되었다.[53] 히스티딘은 산화철 나노입자의 과산화효소를 모방하는 활동을 조절하는데 사용되었다.[54] 금 나노입자의 과산화효소 모방 활동은 계단식 반응을 위한 초분자 전략을 통해 조절되었다.[55] 과산화효소 같은 활성을 가진 Fe3O4 나노질자의 선택성을 개선하기 위해 분자 각인 전략이 개발되었다.[56] 뜨거운 전자를 이용해 금 나노입자의 과산화효소 모사 활동을 강화하는 새로운 전략이 개발됐다.[57] 연구원들은 살아있는 조직에서 포도당과 젖산염을 측정하기 위한 SERS와 과산화수소효소 모사 활동을 모두 가진 금 나노입자(AuNPs) 기반의 통합 나노입자를 설계했다.[58] 시토크롬 c 산화효소는 시토크롬 c로부터 전자를 받아 2O 나노입자의 활성 모사 작용을 조절했다.[59] Fe3O4 NPs는 종양 치료용 포도당 산화효소와 결합되었다.[60] 이산화망간 나노진은 세포 보호 껍질로 사용되어 왔다.[61] 파킨슨병(세포 모델)의 Mn3O4 나노자임(Nanozeme)이 보고되었다.[62] 살아있는 랫드에서 헤파린 제거는 2D MOF 기반 과산화수소효소 모사와 AG73 펩타이드로 모니터링되었다.[63] 포도당 산화효소와 산화철 나노질소는 탠덤 반응이 호환되지 않도록 다분면 하이드로겔 내에 캡슐화했다.[64] 실행 가능한 엔테로박터 사카자키이의 탐지를 위해 캐스케이드 나노자임 바이오센서가 개발되었다.[65] GOx@Z의 통합 나노자IF-8(NiPd)은 탠덤 카탈루션을 위해 개발되었다.[66] 충전 교환형 나노 난자가 개발되었다.[67] 현장 선택형 RNA 스플리싱 나노자임이 개발되었다.[68] 생화학 및 생물물리학의 진보에 관한 나노자 특별호가 발표되었다.[69] Mn3O4 나노진(ROS 청소 활동 포함)은 생체내 반인플레이션을 위해 개발되었다.[70] '미래로의 한 걸음 – 나노입자 효소 미믹스의 응용'이라는 개념이 제안되었다.[71] pd 나노입자의 면에 의존하는 산화효소와 과산화효소 유사 활동이 보고되었다.[72] Au@Pt의 다엽 나노구조가 개발되었다.[73] 페리틴 코팅 탄소 나노진은 종양 촉매 치료를 위해 개발되었다.[74] CuO 나노진은 빛을 제어하는 방식으로 박테리아를 죽이기 위해 개발되었다.[75] 산소화된 CNT의 효소 활성을 연구했다.[76] 나노진은 l-Tyrosine과 l-페닐랄라닌의 도파크롬 산화를 촉진하기 위해 사용되었다.[77] 바이오센싱과 면역항암을 위한 천연효소의 새로운 대안으로 나노자임(Nanojme)이 요약되었다.[78] 과산화효소와 유사한 나노형성에 대해 표준화된 분석이 제안되었다.[79] 반도체 QD는 현장 선택적 광학 DNA의 갈라짐을 유발하는 핵이다.[80] 2D-MOF 나노자 기반 센서 어레이는 인산염 검출 및 효소 가수분해 탐지를 위해 구성되었다.[81] 특정 과산화수소효소 모사로서 N 도핑 탄소 나노 물질이 보고되었다.[82] 나노자 센서 어레이는 작은 분자에서 단백질과 세포에 이르는 분석물질을 검출하기 위해 개발되었다.[83] 파킨슨병의 산화 구리 나노질소가 보고되었다.[84] 종양 이미징을 위한 엑소솜 같은 나노질 베시클이 개발되었다.[85] 나노자에 대한 포괄적인 리뷰는 화학 소사이어티 리뷰에 의해 발표되었다.[8] 나노자에 대한 경과보고서가 발표되었다.[86] 를 들어 효과적인 설명자로서의 점유는 페로브스카이트 산화물 기반 과산화효소 모방물의 촉매 활성도에 대해 개발되었다.[87] 나노자에 대한 화학 리뷰가 출판되었다.[88] 단일 원자 전략은 나노자 개발을 위해 사용되었다.[89][90][91][92] 무금속 바이오 인스 캐스케이드 광투석을 위한 나노진(Nanojme)이 보고되었다.[93] 나노자에 대한 튜토리얼 리뷰는 화학 소사이어티 리뷰에 의해 발표되었다.[94] CO2를 가치 있는 자원으로 전환하기 위한 캐스케이드 나노자 반응이 보고되었다.[95] 생체내 질병 모니터링에는 신 투명 과산화효소 같은 금 나노클러스터가 사용됐다.[96] 구리/탄소 혼합 나노지는 항균 치료를 위해 개발되었다.[97] 페리틴 나노진은 뇌성 말라리아를 치료하기 위해 개발되었다.[98] 나노자(nanojemes)에 대한 리뷰가 Acc에 실렸다. Chem. Res.[99] 스트레인 효과라고 불리는 새로운 전략이 금속 나노자 활동을 조절하기 위해 개발되었다.[100] 프로시안 블루 나노진은 살아있는 쥐의 뇌에서 황화수소(H2S)를 검출하는 데 사용되었다.[101] 포토레이제 같은 CeO2가 보도됐다.[102] 나노자(Nanojemes Have a Impact on Sensing)에 대한 사설은 출판되었다.[103]

2020년대

패혈증 관리를 위해 단일 원자 나노지가 개발되었다.[104] 종양의 광역학 치료를 위해 자가 조립된 단일 원자 나노질체가 개발되었다.[105] 다의약품 내성 세균 감염에 대한 초음파 전환형 나노질(nanoime)이 보고되었다.[106] 화학역학 종양 치료를 위한 나노자 기반의 HO원점증22 교란제가 보고되었다.[107] 계단식 반응을 위한 이리듐 산화물 나노질소가 종양 치료를 위해 개발되었다.[108] 나노어라는 제목의 책이 출판되었다.[109] 자유 급진적 청소 나노공간은 허혈성 뇌졸중을 위해 설계되었다.[110] 금-콘주게이트에 기반한 나노자에 대한 미니뷰.[111] 탈수소효소 모사로서의 SnSe 나노시트가 개발되었다.[112] 내가 흉내낸 탄소 도트 기반 토포아세머레이즈는 DNA를 분리한 것으로 보고되었다.[113] 농약을 검출하기 위해 나노자 센서 어레이가 개발되었다.[114] 생물직교 나노진은 박테리아 생물필름을 치료하는 데 사용되었다.[115] 로듐 나노지는 대장 질환 치료에 사용되었다.[116] Fe-N-C 나노진은 약물-마약 상호작용을 연구하기 위해 개발되었다.[117] 중합체 나노지는 두 번째 근적외선 광온 치료용으로 개발되었다.[118] 인플레 방지 요법으로 5.4O 나노자임이 보고되었다.[119] CeO2@ZIF-8 나노자임은 허혈성 뇌졸중에서 레퍼퓨전 유발 부상을 치료하기 위해 개발되었다.[120] Fe3O4의 과산화효소 유사 활성을 탐색하여 단일 분자/단일 입자 수준에서 전기 촉매 운동학을 연구하였다.[121] Cu-TA 나노진은 담배연기로부터 ROS를 청소하기 위해 조작되었다.[122] 메탈로엔자임(Metalenzyme)과 같은 구리 나노클러스터는 항암과 영상 활동을 동시에 하는 것으로 보고되었다.[123] 인플레 방지 치료를 위해 통합된 나노질소가 개발되었다.[124] 금 나노자에 대한 비균형 조건 하에서 강화된 효소 유사 촉매 활성화가 보고되었다.[125] 과산화효소 같은 나노질소의 활동을 예측하는 DFT 방식이 제안되었다.[126] 면역항진기를 만들기 위해 수성 나노질체가 개발되었다.[127]hydroctic nanojme)이 개발되었다. 구강 투여 나노지는 염증성 장질환 치료를 위해 개발되었다.[128] 리간드 의존적 활동 엔지니어링 전략이 치료를 위해 글루타티온느 과산화수소효소 – MIL-47(V) 금속-유기체 프레임워크 나노지를 개발하는 것으로 보고되었다.[129] 단일 부위의 나노지는 종양 치료를 위해 개발되었다.[130] 미토콘드리아와 신경세포 기능을 조절하기 위해 SOD와 같은 나노질체가 개발되었다.[131] Pd12 조정 케이지([132]Pd12 coordination cage)는 광자산화효소(photorgulated oxidase)와 같은 나노 NADPH 산화효소 같은 나노질소가 개발되었다.[133] 종양 치료를 위해 카탈라아제 같은 나노질체가 개발되었다.[134] 항균을 위해 결함 풍부한 접착제 몰리브덴 이황화/감소 그래핀 산화 나노질소가 개발되었다.[135] 항균을 위해 MOF@COF 나노자임이 개발되었다.[136] 플라스모닉 나노질들이 보고되었다.[137] 종양 치료를 위해 종양 미세환경 반응 나노질(nanozeme)이 개발되었다.[138] 단백질 공학에서 영감을 받은 방법은 매우 활동적인 나노형체를 설계하기 위해 개발되었다.[139] 나노자 정의에 관한 사설이 발표되었다.[140] 고뇨혈증과 허혈성 뇌졸중에 대한 나노자 치료법이 개발되었다.[141] 나노자뿐만 아니라 인공 효소에 대한 관점이 케미컬월드에 의해 발표되었다.[142] 단일 원자 나노진을 포함한 단일 원자 촉매에 대한 검토가 발표되었다.[143] 바이오필름 박멸에는 페록시다제 유사 혼합 FeCo-산화물 기반 표면 텍스처 나노구조체(MTex)가 사용됐다.[144] 천연 과산화효소보다 운동성이 뛰어난 나노질소가 개발됐다.[145] 알츠하이머병을 위해 자기 보호 나노지가 개발되었다.[146] CuSe 나노진은 파킨슨병을 치료하기 위해 개발되었다.[147] 나노클러스터 기반의 나노자체가 개발되었다.[148] 포도당 산화효소 같은 금 나노입자가 사이클로덱스트란과 결합되어 키랄 촉매에 사용되었다.[149] MOF에서 인공 이핵 구리 단옥시게나제가 개발되었다.[150] 매우 효율적인 나노자 설계에 대한 검토가 발표되었다.[151] Ni-Pt 과산화효소 모사는 생체분석을 위해 개발되었다.[152] ROS 스트레스로부터 세포를 보호하기 위해 POM 기반의 나노자임이 보고되었다.[153] 선택적 나노자를 준비하기 위해 게이트 전략을 사용했다.[154] Mn 단일 원자 나노지는 종양 치료를 위해 개발되었다.[155] 헬리코박터균의 선택적 살해를 위해 pH반응 산화효소 유사그래피티 나노질(graphic nanojime)이 개발됐다.[156] 공학적 FeN3P 중심 단일 원자 나노질소가 개발되었다.[157] 과산화수소효소 및 카탈라아제 같은 금 나노자 활성이 변조되었다.[158] 식도암 방사선 치료를 위한 그래핀-산화질소 나노자.[159] 결점 공학은 종양 치료를 위한 나노질(nanojme)을 개발하기 위해 사용되었다.[160] "환경공학을 위한 난모"라는 제목의 책이 출판되었다.[161] pd 단핵 나노자체는 종양 치료를 위해 개발되었다.[162] 종양 치료를 위해 HRP와 같은 나노질소가 개발되었다.[163] GOx와 같은 나노자체의 메커니즘이 보고되었다.[164] 나노자에 대한 계정 리뷰가 발표되었다.[165] 나노유전증 유사 나노자체에 대한 메커니즘 연구가 보고되었다.[166] 나노자 정의에 대한 관점이 발표되었다.[167] Aptananozymes가 개발되었다.[168] 장전된 세리아나노지메는 머리카락이 다시 자라나는 것을 도왔다.[169] 카탈라아제 유사 Pt 나노자임(Pt 나노자임)은 작은 세포외 베실체 분석에 사용되었다.[170] 나노자에 관한 책: 진전과 응용 프로그램은 CRC Press에 의해 출판되었다.[171] 나노입자 촉매변환율에 대한 검토가 발표되었다.[172] 나노자체는 래티오메트릭 분자 이미징을 위해 개발되었다.[173] 암 치료를 위해 Fe3O4/Ag/Bi2MoO6 광활성화 나노자임이 개발되었다.[174] NADH 산화효소 모사로서의 CO/C가 보고되었다.[175] 산화철 나노질소는 충치를 유발하는 바이오필름의 표적에 사용되었다.[176] 고성능 나노질(nanozime)을 위한 새로운 strategy가 개발되었다.[177] SOD와 같은 나노형태를 발견하기 위해 고투과 컴퓨터 선별 전략이 개발되었다.[178] "Nanijme-Enabled Analytical Chemistry"라는 제목의 연례 검토 논문이 Analytics Chemistics에 발표되었다.[179] 통풍에 대한 나노자 기반의 치료법이 보고되었다.[180]

참고 항목

참조

  1. ^ Breslow, Ronald (2006). Artificial Enzymes. John Wiley & Sons. ISBN 978-3-527-60680-1.[페이지 필요]
  2. ^ Kirby, Anthony John; Hollfelder, Florian (2009). From Enzyme Models to Model Enzymes. Royal Society of Chemistry. ISBN 978-0-85404-175-6.[페이지 필요]
  3. ^ Albada, H. Bauke; Soulimani, Fouad; Weckhuysen, Bert M.; Liskamp, Rob M. J. (2007). "Scaffolded amino acids as a close structural mimic of type-3 copper binding sites". Chemical Communications (46): 4895–7. doi:10.1039/b709400k. PMID 18361361.
  4. ^ Röthlisberger, Daniela; Khersonsky, Olga; Wollacott, Andrew M.; Jiang, Lin; DeChancie, Jason; Betker, Jamie; Gallaher, Jasmine L.; Althoff, Eric A.; Zanghellini, Alexandre; Dym, Orly; Albeck, Shira; Houk, Kendall N.; Tawfik, Dan S.; Baker, David (19 March 2008). "Kemp elimination catalysts by computational enzyme design". Nature. 453 (7192): 190–195. Bibcode:2008Natur.453..190R. doi:10.1038/nature06879. PMID 18354394.
  5. ^ "World's first artificial enzymes created using synthetic biology". University of Cambridge. 1 December 2014. Retrieved 14 December 2016.
  6. ^ a b Cheng, Hanjun; Wang, Xiaoyu; Wei, Hui (2016). "Artificial Enzymes: The Next Wave". In Wang, Zerong (ed.). Encyclopedia of Physical Organic Chemistry. American Cancer Society. doi:10.1002/9781118468586. ISBN 978-1-118-47045-9.
  7. ^ Wei, Hui; Wang, Erkang (2013). "Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes". Chemical Society Reviews. 42 (14): 6060–93. doi:10.1039/c3cs35486e. PMID 23740388. S2CID 39693417.
  8. ^ a b Wu, Jiangjiexing; Wang, Xiaoyu; Wang, Quan; Lou, Zhangping; Li, Sirong; Zhu, Yunyao; Qin, Li; Wei, Hui (2019). "Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II)". Chemical Society Reviews. 48 (4): 1004–1076. doi:10.1039/c8cs00457a. PMID 30534770. S2CID 54474779.
  9. ^ 阎锡蕴 (2014). 纳米材料新特性及生物医学应用 (第1版 ed.). 北京: 科学出版社. ISBN 978-7-03-041828-9.[페이지 필요]
  10. ^ GAO, Li-Zeng; YAN, Xi-Yun (2013). "纳米酶的发现与应用" [Discovery and Current Application of Nanozyme]. Acta Agronomica Sinica (in Chinese). 40 (10): 892. doi:10.3724/SP.J.1206.2013.00409.
  11. ^ Wang, Xiaoyu; Hu, Yihui; Wei, Hui (2016). "Nanozymes in bionanotechnology: from sensing to therapeutics and beyond". Inorganic Chemistry Frontiers. 3 (1): 41–60. doi:10.1039/c5qi00240k. S2CID 138012998.
  12. ^ Duan, Demin; Fan, Kelong; Zhang, Dexi; Tan, Shuguang; Liang, Mifang; Liu, Yang; Zhang, Jianlin; Zhang, Panhe; Liu, Wei; Qiu, Xiangguo; Kobinger, Gary P.; Fu Gao, George; Yan, Xiyun (December 2015). "Nanozyme-strip for rapid local diagnosis of Ebola". Biosensors and Bioelectronics. 74: 134–141. doi:10.1016/j.bios.2015.05.025. PMID 26134291.
  13. ^ Dugan, Laura L.; Gabrielsen, Joseph K.; Yu, Shan P.; Lin, Tien-Sung; Choi, Dennis W. (April 1996). "Buckminsterfullerenol Free Radical Scavengers Reduce Excitotoxic and Apoptotic Death of Cultured Cortical Neurons". Neurobiology of Disease. 3 (2): 129–135. doi:10.1006/nbdi.1996.0013. PMID 9173920. S2CID 26139075.
  14. ^ Dugan, Laura L.; Turetsky, Dorothy M.; Du, Cheng; Lobner, Doug; Wheeler, Mark; Almli, C. Robert; Shen, Clifton K.-F.; Luh, Tien-Yau; Choi, Dennis W.; Lin, Tien-Sung (19 August 1997). "Carboxyfullerenes as neuroprotective agents". Proceedings of the National Academy of Sciences of the United States of America. 94 (17): 9434–9439. Bibcode:1997PNAS...94.9434D. doi:10.1073/pnas.94.17.9434. PMC 23208. PMID 9256500.
  15. ^ Pasquato, Lucia; Pengo, Paolo; Scrimin, Paolo (January 2005). "Nanozymes: Functional Nanoparticle-based Catalysts". Supramolecular Chemistry. 17 (1–2): 163–171. doi:10.1080/10610270412331328817. S2CID 98249602.
  16. ^ Manea, Flavio; Houillon, Florence Bodar; Pasquato, Lucia; Scrimin, Paolo (19 November 2004). "Nanozymes: Gold-Nanoparticle-Based Transphosphorylation Catalysts". Angewandte Chemie International Edition. 43 (45): 6165–6169. doi:10.1002/anie.200460649. PMID 15549744.
  17. ^ Chen, Junping; Patil, Swanand; Seal, Sudipta; McGinnis, James F. (29 October 2006). "Rare earth nanoparticles prevent retinal degeneration induced by intracellular peroxides". Nature Nanotechnology. 1 (2): 142–150. Bibcode:2006NatNa...1..142C. doi:10.1038/nnano.2006.91. PMID 18654167. S2CID 3093558.
  18. ^ Silva, Gabriel A. (November 2006). "Seeing the benefits of ceria". Nature Nanotechnology. 1 (2): 92–94. Bibcode:2006NatNa...1...92S. doi:10.1038/nnano.2006.111. PMID 18654154. S2CID 205441553.
  19. ^ Gao, Lizeng; Zhuang, Jie; Nie, Leng; Zhang, Jinbin; Zhang, Yu; Gu, Ning; Wang, Taihong; Feng, Jing; Yang, Dongling; Perrett, Sarah; Yan, Xiyun (26 August 2007). "Intrinsic peroxidase-like activity of ferromagnetic nanoparticles". Nature Nanotechnology. 2 (9): 577–583. Bibcode:2007NatNa...2..577G. doi:10.1038/nnano.2007.260. PMID 18654371.
  20. ^ Perez, J. Manuel (26 August 2007). "Hidden talent". Nature Nanotechnology. 2 (9): 535–536. Bibcode:2007NatNa...2..535P. doi:10.1038/nnano.2007.282. PMID 18654361.
  21. ^ Wei, Hui; Wang, Erkang (March 2008). "Fe3O4 Magnetic Nanoparticles as Peroxidase Mimetics and Their Applications in H2O2 and Glucose Detection". Analytical Chemistry. 80 (6): 2250–2254. doi:10.1021/ac702203f. PMID 18290671.
  22. ^ Karakoti, Ajay; Singh, Sanjay; Dowding, Janet M.; Seal, Sudipta; Self, William T. (2010). "Redox-active radical scavenging nanomaterials". Chemical Society Reviews. 39 (11): 4422–32. doi:10.1039/b919677n. PMID 20717560.
  23. ^ Xie, Jianxin; Zhang, Xiaodan; Wang, Hui; Zheng, Huzhi; Huang, Yuming; Xie, Jianxin (October 2012). "Analytical and environmental applications of nanoparticles as enzyme mimetics". TrAC Trends in Analytical Chemistry. 39: 114–129. doi:10.1016/j.trac.2012.03.021.
  24. ^ Wei, Hui; Wang, Erkang (2013). "Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes". Chemical Society Reviews. 42 (14): 6060–93. doi:10.1039/c3cs35486e. PMID 23740388.
  25. ^ GAO, Li-Zeng; YAN, Xi-Yun (2013). "Discovery and Current Application of Nanozyme". Acta Agronomica Sinica. 40 (10): 892. doi:10.3724/sp.j.1206.2013.00409.
  26. ^ He, Weiwei; Wamer, Wayne; Xia, Qingsu; Yin, Jun-jie; Fu, Peter P. (29 May 2014). "Enzyme-Like Activity of Nanomaterials". Journal of Environmental Science and Health, Part C. 32 (2): 186–211. doi:10.1080/10590501.2014.907462. PMID 24875443. S2CID 1994217.
  27. ^ Lin, Youhui; Ren, Jinsong; Qu, Xiaogang (July 2014). "Nano-Gold as Artificial Enzymes: Hidden Talents". Advanced Materials. 26 (25): 4200–4217. doi:10.1002/adma.201400238. PMID 24692212.
  28. ^ Lin, Youhui; Ren, Jinsong; Qu, Xiaogang (17 January 2014). "Catalytically Active Nanomaterials: A Promising Candidate for Artificial Enzymes". Accounts of Chemical Research. 47 (4): 1097–1105. doi:10.1021/ar400250z. PMID 24437921.
  29. ^ Prins, Leonard J. (22 June 2015). "Emergence of Complex Chemistry on an Organic Monolayer". Accounts of Chemical Research. 48 (7): 1920–1928. doi:10.1021/acs.accounts.5b00173. PMID 26098550.
  30. ^ Zheng, Li; Zhao, Jinhang; Niu, Xiaofang; Yang, Yunhui (2015). "Nanomaterial-based peroxidase enzyme mimics with applications to colorimetric analysis and electrochemical sensor". Materials Review. 29: 115–12.
  31. ^ Wang, Xiaoyu; Hu, Yihui; Wei, Hui (2016). "Nanozymes in bionanotechnology: from sensing to therapeutics and beyond". Inorganic Chemistry Frontiers. 3 (1): 41–60. doi:10.1039/c5qi00240k.
  32. ^ Gao, Lizeng; Yan, Xiyun (22 March 2016). "Nanozymes: an emerging field bridging nanotechnology and biology". Science China Life Sciences. 59 (4): 400–402. doi:10.1007/s11427-016-5044-3. PMID 27002958.
  33. ^ Ragg, Ruben; Tahir, Muhammad N.; Tremel, Wolfgang (May 2016). "Solids Go Bio: Inorganic Nanoparticles as Enzyme Mimics". European Journal of Inorganic Chemistry. 2016 (13–14): 1906–1915. doi:10.1002/ejic.201501237.
  34. ^ Kuah, Evelyn; Toh, Seraphina; Yee, Jessica; Ma, Qian; Gao, Zhiqiang (13 June 2016). "Enzyme Mimics: Advances and Applications". Chemistry - A European Journal. 22 (25): 8404–8430. doi:10.1002/chem.201504394. PMID 27062126.
  35. ^ Wang, Xiaoyu; Guo, Wenjing; Hu, Yihui; Wu, Jiangjiexing; Wei, Hui (2016). Nanozymes: Next Wave of Artificial Enzymes. Springer. ISBN 978-3-662-53068-9.[페이지 필요]
  36. ^ 李正强, 副 罗贵民 主编 高仁钧 (2016-05-01). 酶工程(第3版) (第3版 ed.). 化学工业出版社. ISBN 978-7-122-25760-4.[페이지 필요]
  37. ^ Song, Yujun; Qu, Konggang; Zhao, Chao; Ren, Jinsong; Qu, Xiaogang (5 March 2010). "Graphene Oxide: Intrinsic Peroxidase Catalytic Activity and Its Application to Glucose Detection". Advanced Materials. 22 (19): 2206–2210. doi:10.1002/adma.200903783. PMID 20564257.
  38. ^ Guo, Yujing; Deng, Liu; Li, Jing; Guo, Shaojun; Wang, Erkang; Dong, Shaojun (10 January 2011). "Hemin−Graphene Hybrid Nanosheets with Intrinsic Peroxidase-like Activity for Label-free Colorimetric Detection of Single-Nucleotide Polymorphism". ACS Nano. 5 (2): 1282–1290. doi:10.1021/nn1029586. PMID 21218851.
  39. ^ Fan, Kelong; Cao, Changqian; Pan, Yongxin; Lu, Di; Yang, Dongling; Feng, Jing; Song, Lina; Liang, Minmin; Yan, Xiyun (17 June 2012). "Magnetoferritin nanoparticles for targeting and visualizing tumour tissues". Nature Nanotechnology. 7 (7): 459–464. Bibcode:2012NatNa...7..459F. doi:10.1038/nnano.2012.90. PMID 22706697.
  40. ^ Natalio, Filipe; André, Rute; Hartog, Aloysius F.; Stoll, Brigitte; Jochum, Klaus Peter; Wever, Ron; Tremel, Wolfgang (1 July 2012). "Vanadium pentoxide nanoparticles mimic vanadium haloperoxidases and thwart biofilm formation" (PDF). Nature Nanotechnology. 7 (8): 530–535. Bibcode:2012NatNa...7..530N. doi:10.1038/nnano.2012.91. PMID 22751222.
  41. ^ Vernekar, Amit A.; Sinha, Devanjan; Srivastava, Shubhi; Paramasivam, Prasath U.; D'Silva, Patrick; Mugesh, Govindasamy (21 November 2014). "An antioxidant nanozyme that uncovers the cytoprotective potential of vanadia nanowires". Nature Communications. 5 (1): 5301. Bibcode:2014NatCo...5E5301V. doi:10.1038/ncomms6301. PMID 25412933.
  42. ^ Dugan, Laura L.; Tian, LinLin; Quick, Kevin L.; Hardt, Josh I.; Karimi, Morvarid; Brown, Chris; Loftin, Susan; Flores, Hugh; Moerlein, Stephen M.; Polich, John; Tabbal, Samer D.; Mink, Jonathan W.; Perlmutter, Joel S. (September 2014). "Carboxyfullerene neuroprotection postinjury in Parkinsonian nonhuman primates". Annals of Neurology. 76 (3): 393–402. doi:10.1002/ana.24220. PMC 4165715. PMID 25043598.
  43. ^ Tonga, Gulen Yesilbag; Jeong, Youngdo; Duncan, Bradley; Mizuhara, Tsukasa; Mout, Rubul; Das, Riddha; Kim, Sung Tae; Yeh, Yi-Cheun; Yan, Bo; Hou, Singyuk; Rotello, Vincent M. (23 June 2015). "Supramolecular regulation of bioorthogonal catalysis in cells using nanoparticle-embedded transition metal catalysts". Nature Chemistry. 7 (7): 597–603. Bibcode:2015NatCh...7..597T. doi:10.1038/nchem.2284. PMC 5697749. PMID 26100809.
  44. ^ Unciti-Broceta, Asier (23 June 2015). "Rise of the nanobots". Nature Chemistry. 7 (7): 538–539. Bibcode:2015NatCh...7..538U. doi:10.1038/nchem.2291. PMID 26100798.
  45. ^ Cai, Ren; Yang, Dan; Peng, Shengjie; Chen, Xigao; Huang, Yun; Liu, Yuan; Hou, Weijia; Yang, Shengyuan; Liu, Zhenbao; Tan, Weihong (23 October 2015). "Single Nanoparticle to 3D Supercage: Framing for an Artificial Enzyme System". Journal of the American Chemical Society. 137 (43): 13957–13963. doi:10.1021/jacs.5b09337. PMC 4927331. PMID 26464081.
  46. ^ Cheng, Hanjun; Zhang, Lei; He, Jian; Guo, Wenjing; Zhou, Zhengyang; Zhang, Xuejin; Nie, Shuming; Wei, Hui (6 May 2016). "Integrated Nanozymes with Nanoscale Proximity for in Vivo Neurochemical Monitoring in Living Brains". Analytical Chemistry. 88 (10): 5489–5497. doi:10.1021/acs.analchem.6b00975. PMID 27067749. Lay summaryPhys.org (April 13, 2016).
  47. ^ Liu, Yuan; Purich, Daniel L.; Wu, Cuichen; Wu, Yuan; Chen, Tao; Cui, Cheng; Zhang, Liqin; Cansiz, Sena; Hou, Weijia; Wang, Yanyue; Yang, Shengyuan; Tan, Weihong (20 November 2015). "Ionic Functionalization of Hydrophobic Colloidal Nanoparticles To Form Ionic Nanoparticles with Enzymelike Properties". Journal of the American Chemical Society. 137 (47): 14952–14958. doi:10.1021/jacs.5b08533. PMC 4898269. PMID 26562739.
  48. ^ "New Ebola test to make diagnosis easier, faster and cheaper". Elsevier. 1 December 2015.
  49. ^ Duan, Demin; Fan, Kelong; Zhang, Dexi; Tan, Shuguang; Liang, Mifang; Liu, Yang; Zhang, Jianlin; Zhang, Panhe; Liu, Wei; Qiu, Xiangguo; Kobinger, Gary P.; Fu Gao, George; Yan, Xiyun (December 2015). "Nanozyme-strip for rapid local diagnosis of Ebola". Biosensors and Bioelectronics. 74: 134–141. doi:10.1016/j.bios.2015.05.025. PMID 26134291.
  50. ^ Liu, Biwu; Sun, Ziyi; Huang, Po-Jung Jimmy; Liu, Juewen (20 January 2015). "Hydrogen Peroxide Displacing DNA from Nanoceria: Mechanism and Detection of Glucose in Serum". Journal of the American Chemical Society. 137 (3): 1290–1295. doi:10.1021/ja511444e. PMID 25574932.
  51. ^ Cheng, Hanjun; Lin, Shichao; Muhammad, Faheem; Lin, Ying-Wu; Wei, Hui (November 2016). "Rationally Modulate the Oxidase-like Activity of Nanoceria for Self-Regulated Bioassays". ACS Sensors. 1 (11): 1336–1343. doi:10.1021/acssensors.6b00500.
  52. ^ Zhang, Wei; Hu, Sunling; Yin, Jun-Jie; He, Weiwei; Lu, Wei; Ma, Ming; Gu, Ning; Zhang, Yu (9 March 2016). "Prussian Blue Nanoparticles as Multienzyme Mimetics and Reactive Oxygen Species Scavengers". Journal of the American Chemical Society. 138 (18): 5860–5865. doi:10.1021/jacs.5b12070. PMID 26918394.
  53. ^ Nath, Ipsita; Chakraborty, Jeet; Verpoort, Francis (2016). "Metal organic frameworks mimicking natural enzymes: a structural and functional analogy". Chemical Society Reviews. 45 (15): 4127–4170. doi:10.1039/c6cs00047a. PMID 27251115.
  54. ^ Fan, Kelong; Wang, Hui; Xi, Juqun; Liu, Qi; Meng, Xiangqin; Duan, Demin; Gao, Lizeng; Yan, Xiyun (2017). "Optimization of Fe3O4 nanozyme activity via single amino acid modification mimicking an enzyme active site". Chemical Communications. 53 (2): 424–427. doi:10.1039/c6cc08542c. PMID 27959363. S2CID 1204530.
  55. ^ Zhao, Yan; Huang, Yucheng; Zhu, Hui; Zhu, Qingqing; Xia, Yunsheng (16 December 2016). "Three-in-One: Sensing, Self-Assembly, and Cascade Catalysis of Cyclodextrin Modified Gold Nanoparticles". Journal of the American Chemical Society. 138 (51): 16645–16654. doi:10.1021/jacs.6b07590. PMID 27983807.
  56. ^ Zhang, Zijie; Zhang, Xiaohan; Liu, Biwu; Liu, Juewen (5 April 2017). "Molecular Imprinting on Inorganic Nanozymes for Hundred-fold Enzyme Specificity". Journal of the American Chemical Society. 139 (15): 5412–5419. doi:10.1021/jacs.7b00601. PMID 28345903.
  57. ^ Wang, Chen; Shi, Yi; Dan, Yuan-Yuan; Nie, Xing-Guo; Li, Jian; Xia, Xing-Hua (17 May 2017). "Enhanced Peroxidase-Like Performance of Gold Nanoparticles by Hot Electrons". Chemistry - A European Journal. 23 (28): 6717–6723. doi:10.1002/chem.201605380. PMID 28217846.
  58. ^ Hu, Yihui; Cheng, Hanjun; Zhao, Xiaozhi; Wu, Jiangjiexing; Muhammad, Faheem; Lin, Shichao; He, Jian; Zhou, Liqi; Zhang, Chengping; Deng, Yu; Wang, Peng; Zhou, Zhengyang; Nie, Shuming; Wei, Hui (June 2017). "Surface-Enhanced Raman Scattering Active Gold Nanoparticles with Enzyme-Mimicking Activities for Measuring Glucose and Lactate in Living Tissues". ACS Nano. 11 (6): 5558–5566. doi:10.1021/acsnano.7b00905. PMID 28549217.
  59. ^ Chen, Ming; Wang, Zhonghua; Shu, Jinxia; Jiang, Xiaohui; Wang, Wei; Shi, Zhen-Hua; Lin, Ying-Wu (28 July 2017). "Mimicking a Natural Enzyme System: Cytochrome c Oxidase-Like Activity of Cu2O Nanoparticles by Receiving Electrons from Cytochrome c". Inorganic Chemistry. 56 (16): 9400–9403. doi:10.1021/acs.inorgchem.7b01393. PMID 28753305.
  60. ^ Huo, Minfeng; Wang, Liying; Chen, Yu; Shi, Jianlin (25 August 2017). "Tumor-selective catalytic nanomedicine by nanocatalyst delivery". Nature Communications. 8 (1): 357. Bibcode:2017NatCo...8..357H. doi:10.1038/s41467-017-00424-8. PMC 5572465. PMID 28842577.
  61. ^ Li, Wei; Liu, Zhen; Liu, Chaoqun; Guan, Yijia; Ren, Jinsong; Qu, Xiaogang (23 October 2017). "Manganese Dioxide Nanozymes as Responsive Cytoprotective Shells for Individual Living Cell Encapsulation". Angewandte Chemie International Edition. 56 (44): 13661–13665. doi:10.1002/anie.201706910. PMID 28884490.
  62. ^ Singh, Namrata; Savanur, Mohammed Azharuddin; Srivastava, Shubhi; D'Silva, Patrick; Mugesh, Govindasamy (6 November 2017). "A Redox Modulatory Mn3O4 Nanozyme with Multi‐Enzyme Activity Provides Efficient Cytoprotection to Human Cells in a Parkinson's Disease Model". Angewandte Chemie International Edition. 56 (45): 14267–14271. doi:10.1002/anie.201708573. PMID 28922532.
  63. ^ Cheng, Hanjun; Liu, Yufeng; Hu, Yihui; Ding, Yubin; Lin, Shichao; Cao, Wen; Wang, Qian; Wu, Jiangjiexing; Muhammad, Faheem; Zhao, Xiaozhi; Zhao, Dan; Li, Zhe; Xing, Hang; Wei, Hui (23 October 2017). "Monitoring of Heparin Activity in Live Rats Using Metal–Organic Framework Nanosheets as Peroxidase Mimics". Analytical Chemistry. 89 (21): 11552–11559. doi:10.1021/acs.analchem.7b02895. PMID 28992698.
  64. ^ Tan, Hongliang; Guo, Song; Dinh, Ngoc-Duy; Luo, Rongcong; Jin, Lin; Chen, Chia-Hung (22 September 2017). "Heterogeneous multi-compartmental hydrogel particles as synthetic cells for incompatible tandem reactions". Nature Communications. 8 (1): 663. Bibcode:2017NatCo...8..663T. doi:10.1038/s41467-017-00757-4. PMC 5610232. PMID 28939810.
  65. ^ Zhang, Li; Chen, Yuting; Cheng, Nan; Xu, Yuancong; Huang, Kunlun; Luo, Yunbo; Wang, Peixia; Duan, Demin; Xu, Wentao (20 September 2017). "Ultrasensitive Detection of Viable Enterobacter sakazakii by a Continual Cascade Nanozyme Biosensor". Analytical Chemistry. 89 (19): 10194–10200. doi:10.1021/acs.analchem.7b01266. PMID 28881135.
  66. ^ Wang, Qingqing; Zhang, Xueping; Huang, Liang; Zhang, Zhiquan; Dong, Shaojun (11 December 2017). "GOx@ZIF-8(NiPd) Nanoflower: An Artificial Enzyme System for Tandem Catalysis". Angewandte Chemie International Edition. 56 (50): 16082–16085. doi:10.1002/anie.201710418. PMID 29119659.
  67. ^ Gupta, Akash; Das, Riddha; Yesilbag Tonga, Gulen; Mizuhara, Tsukasa; Rotello, Vincent M. (21 December 2017). "Charge-Switchable Nanozymes for Bioorthogonal Imaging of Biofilm-Associated Infections". ACS Nano. 12 (1): 89–94. doi:10.1021/acsnano.7b07496. PMC 5846330. PMID 29244484.
  68. ^ Petree, Jessica R.; Yehl, Kevin; Galior, Kornelia; Glazier, Roxanne; Deal, Brendan; Salaita, Khalid (19 December 2017). "Site-Selective RNA Splicing Nanozyme: DNAzyme and RtcB Conjugates on a Gold Nanoparticle". ACS Chemical Biology. 13 (1): 215–224. doi:10.1021/acschembio.7b00437. PMC 6085866. PMID 29155548.
  69. ^ "An issue for nanozymes research". www.pibb.ac.cn. Retrieved 2018-02-06.
  70. ^ Yao, Jia; Cheng, Yuan; Zhou, Min; Zhao, Sheng; Lin, Shichao; Wang, Xiaoyu; Wu, Jiangjiexing; Li, Sirong; Wei, Hui (2018). "ROS scavenging Mn3O4 nanozymes for in vivo anti-inflammation". Chemical Science. 9 (11): 2927–2933. doi:10.1039/c7sc05476a. PMC 5915792. PMID 29732076.
  71. ^ Korschelt, Karsten; Tahir, Muhammad Nawaz; Tremel, Wolfgang (11 July 2018). "A Step into the Future: Applications of Nanoparticle Enzyme Mimics". Chemistry - A European Journal. 24 (39): 9703–9713. doi:10.1002/chem.201800384. PMID 29447433.
  72. ^ Fang, Ge; Li, Weifeng; Shen, Xiaomei; Perez-Aguilar, Jose Manuel; Chong, Yu; Gao, Xingfa; Chai, Zhifang; Chen, Chunying; Ge, Cuicui; Zhou, Ruhong (9 January 2018). "Differential Pd-nanocrystal facets demonstrate distinct antibacterial activity against Gram-positive and Gram-negative bacteria". Nature Communications. 9 (1): 129. Bibcode:2018NatCo...9..129F. doi:10.1038/s41467-017-02502-3. PMC 5760645. PMID 29317632.
  73. ^ Wu, Jiangjiexing; Qin, Kang; Yuan, Dan; Tan, Jun; Qin, Li; Zhang, Xuejin; Wei, Hui (26 March 2018). "Rational Design of Au@Pt Multibranched Nanostructures as Bifunctional Nanozymes". ACS Applied Materials & Interfaces. 10 (15): 12954–12959. doi:10.1021/acsami.7b17945. PMID 29577720.
  74. ^ Fan, Kelong; Xi, Juqun; Fan, Lei; Wang, Peixia; Zhu, Chunhua; Tang, Yan; Xu, Xiangdong; Liang, Minmin; Jiang, Bing; Yan, Xiyun; Gao, Lizeng (12 April 2018). "In vivo guiding nitrogen-doped carbon nanozyme for tumor catalytic therapy". Nature Communications. 9 (1): 1440. Bibcode:2018NatCo...9.1440F. doi:10.1038/s41467-018-03903-8. PMC 5897348. PMID 29650959.
  75. ^ Karim, Md. Nurul; Singh, Mandeep; Weerathunge, Pabudi; Bian, Pengju; Zheng, Rongkun; Dekiwadia, Chaitali; Ahmed, Taimur; Walia, Sumeet; Della Gaspera, Enrico; Singh, Sanjay; Ramanathan, Rajesh; Bansal, Vipul (6 March 2018). "Visible-Light-Triggered Reactive-Oxygen-Species-Mediated Antibacterial Activity of Peroxidase-Mimic CuO Nanorods". ACS Applied Nano Materials. 1 (4): 1694–1704. doi:10.1021/acsanm.8b00153.
  76. ^ Wang, Huan; Li, Penghui; Yu, Dongqin; Zhang, Yan; Wang, Zhenzhen; Liu, Chaoqun; Qiu, Hao; Liu, Zhen; Ren, Jinsong; Qu, Xiaogang (15 May 2018). "Unraveling the Enzymatic Activity of Oxygenated Carbon Nanotubes and Their Application in the Treatment of Bacterial Infections". Nano Letters. 18 (6): 3344–3351. Bibcode:2018NanoL..18.3344W. doi:10.1021/acs.nanolett.7b05095. PMID 29763562.
  77. ^ Hou, Jianwen; Vázquez-González, Margarita; Fadeev, Michael; Liu, Xia; Lavi, Ronit; Willner, Itamar (10 May 2018). "Catalyzed and Electrocatalyzed Oxidation of l-Tyrosine and l-Phenylalanine to Dopachrome by Nanozymes". Nano Letters. 18 (6): 4015–4022. Bibcode:2018NanoL..18.4015H. doi:10.1021/acs.nanolett.8b01522. PMID 29745234.
  78. ^ Wang, Qingqing; Wei, Hui; Zhang, Zhiquan; Wang, Erkang; Dong, Shaojun (August 2018). "Nanozyme: An emerging alternative to natural enzyme for biosensing and immunoassay". TrAC Trends in Analytical Chemistry. 105: 218–224. doi:10.1016/j.trac.2018.05.012.
  79. ^ Jiang, Bing; Duan, Demin; Gao, Lizeng; Zhou, Mengjie; Fan, Kelong; Tang, Yan; Xi, Juqun; Bi, Yuhai; Tong, Zhou; Gao, George Fu; Xie, Ni; Tang, Aifa; Nie, Guohui; Liang, Minmin; Yan, Xiyun (2 July 2018). "Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes". Nature Protocols. 13 (7): 1506–1520. doi:10.1038/s41596-018-0001-1. PMID 29967547. S2CID 49558769.
  80. ^ Sun, Maozhong; Xu, Liguang; Qu, Aihua; Zhao, Peng; Hao, Tiantian; Ma, Wei; Hao, Changlong; Wen, Xiaodong; Colombari, Felippe M.; de Moura, Andre F.; Kotov, Nicholas A.; Xu, Chuanlai; Kuang, Hua (20 July 2018). "Site-selective photoinduced cleavage and profiling of DNA by chiral semiconductor nanoparticles". Nature Chemistry. 10 (8): 821–830. Bibcode:2018NatCh..10..821S. doi:10.1038/s41557-018-0083-y. PMID 30030537. S2CID 51705012.
  81. ^ Qin, Li; Wang, Xiaoyu; Liu, Yufeng; Wei, Hui (25 July 2018). "2D-Metal–Organic-Framework-Nanozyme Sensor Arrays for Probing Phosphates and Their Enzymatic Hydrolysis". Analytical Chemistry. 90 (16): 9983–9989. doi:10.1021/acs.analchem.8b02428. PMID 30044077. S2CID 51715627.
  82. ^ Hu, Yihui; Gao, Xuejiao J.; Zhu, Yunyao; Muhammad, Faheem; Tan, Shihua; Cao, Wen; Lin, Shichao; Jin, Zhong; Gao, Xingfa; Wei, Hui (20 August 2018). "Nitrogen-Doped Carbon Nanomaterials as Highly Active and Specific Peroxidase Mimics". Chemistry of Materials. 30 (18): 6431–6439. doi:10.1021/acs.chemmater.8b02726. S2CID 106300299.
  83. ^ Wang, Xiaoyu; Qin, Li; Zhou, Min; Lou, Zhangping; Wei, Hui (3 September 2018). "Nanozyme Sensor Arrays for Detecting Versatile Analytes from Small Molecules to Proteins and Cells". Analytical Chemistry. 90 (19): 11696–11702. doi:10.1021/acs.analchem.8b03374. PMID 30175585. S2CID 52144288.
  84. ^ Hao, Changlong; Qu, Aihua; Xu, Liguang; Sun, Maozhong; Zhang, Hongyu; Xu, Chuanlai; Kuang, Hua (12 December 2018). "Chiral Molecule-mediated Porous CuxO Nanoparticle Clusters with Antioxidation Activity for Ameliorating Parkinson's Disease". Journal of the American Chemical Society. 141 (2): 1091–1099. doi:10.1021/jacs.8b11856. PMID 30540450. S2CID 195670970.
  85. ^ Ding, Hui; Cai, Yanjuan; Gao, Lizeng; Liang, Minmin; Miao, Beiping; Wu, Hanwei; Liu, Yang; Xie, Ni; Tang, Aifa; Fan, Kelong; Yan, Xiyun; Nie, Guohui (12 December 2018). "Exosome-like Nanozyme Vesicles for H2O2-Responsive Catalytic Photoacoustic Imaging of Xenograft Nasopharyngeal Carcinoma". Nano Letters. 19 (1): 203–209. doi:10.1021/acs.nanolett.8b03709. PMID 30539641. S2CID 54475613.
  86. ^ Wang, Hui; Wan, Kaiwei; Shi, Xinghua (27 December 2018). "Recent Advances in Nanozyme Research". Advanced Materials. 31 (45): 1805368. doi:10.1002/adma.201805368. PMID 30589120. S2CID 58661537.
  87. ^ Wang, Xiaoyu; Gao, Xuejiao J.; Qin, Li; Wang, Changda; Song, Li; Zhou, Yong-Ning; Zhu, Guoyin; Cao, Wen; Lin, Shichao; Zhou, Liqi; Wang, Kang; Zhang, Huigang; Jin, Zhong; Wang, Peng; Gao, Xingfa; Wei, Hui (11 February 2019). "eg occupancy as an effective descriptor for the catalytic activity of perovskite oxide-based peroxidase mimics". Nature Communications. 10 (1): 704. Bibcode:2019NatCo..10..704W. doi:10.1038/s41467-019-08657-5. PMC 6370761. PMID 30741958.
  88. ^ Huang, Yanyan; Ren, Jinsong; Qu, Xiaogang (25 February 2019). "Nanozymes: Classification, Catalytic Mechanisms, Activity Regulation, and Applications". Chemical Reviews. 119 (6): 4357–4412. doi:10.1021/acs.chemrev.8b00672. PMID 30801188. S2CID 73479528.
  89. ^ Huang, Liang; Chen, Jinxing; Gan, Linfeng; Wang, Jin; Dong, Shaojun (3 May 2019). "Single-atom nanozymes". Science Advances. 5 (5): eaav5490. Bibcode:2019SciA....5.5490H. doi:10.1126/sciadv.aav5490. PMC 6499548. PMID 31058221.
  90. ^ Ma, Wenjie; Mao, Junjie; Yang, Xiaoti; Pan, Cong; Chen, Wenxing; Wang, Ming; Yu, Ping; Mao, Lanqun; Li, Yadong (2019). "A single-atom Fe–N4 catalytic site mimicking bifunctional antioxidative enzymes for oxidative stress cytoprotection". Chemical Communications. 55 (2): 159–162. doi:10.1039/c8cc08116f. PMID 30465670. S2CID 53722839.
  91. ^ Zhao, Chao; Xiong, Can; Liu, Xiaokang; Qiao, Man; Li, Zhijun; Yuan, Tongwei; Wang, Jing; Qu, Yunteng; Wang, XiaoQian; Zhou, Fangyao; Xu, Qian; Wang, Shiqi; Chen, Min; Wang, Wenyu; Li, Yafei; Yao, Tao; Wu, Yuen; Li, Yadong (2019). "Unraveling the enzyme-like activity of heterogeneous single atom catalyst". Chemical Communications. 55 (16): 2285–2288. doi:10.1039/c9cc00199a. PMID 30694288. S2CID 59339217.
  92. ^ Xu, Bolong; Wang, Hui; Wang, Weiwei; Gao, Lizeng; Li, Shanshan; Pan, Xueting; Wang, Hongyu; Yang, Hailong; Meng, Xiangqin; Wu, Qiuwen; Zheng, Lirong; Chen, Shenming; Shi, Xinghua; Fan, Kelong; Yan, Xiyun; Liu, Huiyu (April 2019). "A Single‐Atom Nanozyme for Wound Disinfection Applications". Angewandte Chemie International Edition. 58 (15): 4911–4916. doi:10.1002/anie.201813994. PMID 30697885. S2CID 59411242.
  93. ^ Zhang, Peng; Sun, Dengrong; Cho, Ara; Weon, Seunghyun; Lee, Seonggyu; Lee, Jinwoo; Han, Jeong Woo; Kim, Dong-Pyo; Choi, Wonyong (26 February 2019). "Modified carbon nitride nanozyme as bifunctional glucose oxidase-peroxidase for metal-free bioinspired cascade photocatalysis". Nature Communications. 10 (1): 940. Bibcode:2019NatCo..10..940Z. doi:10.1038/s41467-019-08731-y. PMC 6391499. PMID 30808912.
  94. ^ Jiang, Dawei; Ni, Dalong; Rosenkrans, Zachary T.; Huang, Peng; Yan, Xiyun; Cai, Weibo (2019). "Nanozyme: new horizons for responsive biomedical applications". Chemical Society Reviews. 48 (14): 3683–3704. doi:10.1039/c8cs00718g. PMC 6696937. PMID 31119258.
  95. ^ O'Mara, Peter B.; Wilde, Patrick; Benedetti, Tania M.; Andronescu, Corina; Cheong, Soshan; Gooding, J. Justin; Tilley, Richard D.; Schuhmann, Wolfgang (25 August 2019). "Cascade Reactions in Nanozymes: Spatially Separated Active Sites inside Ag-Core–Porous-Cu-Shell Nanoparticles for Multistep Carbon Dioxide Reduction to Higher Organic Molecules". Journal of the American Chemical Society. 141 (36): 14093–14097. doi:10.1021/jacs.9b07310. PMC 7551659. PMID 31448598.
  96. ^ Loynachan, Colleen N.; Soleimany, Ava P.; Dudani, Jaideep S.; Lin, Yiyang; Najer, Adrian; Bekdemir, Ahmet; Chen, Qu; Bhatia, Sangeeta N.; Stevens, Molly M. (2 September 2019). "Renal clearable catalytic gold nanoclusters for in vivo disease monitoring". Nature Nanotechnology. 14 (9): 883–890. Bibcode:2019NatNa..14..883L. doi:10.1038/s41565-019-0527-6. PMC 7045344. PMID 31477801.
  97. ^ Xi, Juqun; Wei, Gen; An, Lanfang; Xu, Zhuobin; Xu, Zhilong; Fan, Lei; Gao, Lizeng (3 October 2019). "Copper/Carbon Hybrid Nanozyme: Tuning Catalytic Activity by the Copper State for Antibacterial Therapy". Nano Letters. 19 (11): 7645–7654. Bibcode:2019NanoL..19.7645X. doi:10.1021/acs.nanolett.9b02242. PMID 31580681. S2CID 206750807.
  98. ^ Zhao, Shuai; Duan, Hongxia; Yang, Yili; Yan, Xiyun; Fan, Kelong (November 2019). "Fenozyme Protects the Integrity of the Blood–Brain Barrier against Experimental Cerebral Malaria". Nano Letters. 19 (12): 8887–8895. Bibcode:2019NanoL..19.8887Z. doi:10.1021/acs.nanolett.9b03774. PMID 31671939. S2CID 207815491.
  99. ^ Liang, Minmin; Yan, Xiyun (5 July 2019). "Nanozymes: From New Concepts, Mechanisms, and Standards to Applications". Accounts of Chemical Research. 52 (8): 2190–2200. doi:10.1021/acs.accounts.9b00140. PMID 31276379. S2CID 195812591.
  100. ^ Xi, Zheng; Cheng, Xun; Gao, Zhuangqiang; Wang, Mengjing; Cai, Tong; Muzzio, Michelle; Davidson, Edwin; Chen, Ou; Jung, Yeonwoong; Sun, Shouheng; Xu, Ye; Xia, Xiaohu (10 December 2019). "Strain Effect in Palladium Nanostructures as Nanozymes". Nano Letters. 20 (1): 272–277. doi:10.1021/acs.nanolett.9b03782. OSTI 1594049. PMID 31821008. S2CID 209313254.
  101. ^ Wang, Chao; Wang, Manchao; Zhang, Wang; Liu, Jia; Lu, Mingju; Li, Kai; Lin, Yuqing (13 December 2019). "Integrating Prussian Blue Analog-Based Nanozyme and Online Visible Light Absorption Approach for Continuous Hydrogen Sulfide Monitoring in Brains of Living Rats". Analytical Chemistry. 92 (1): 662–667. doi:10.1021/acs.analchem.9b04931. PMID 31834784. S2CID 209357162.
  102. ^ Tian, Zhimin; Yao, Tianzhu; Qu, Chaoyi; Zhang, Sai; Li, Xuhui; Qu, Yongquan (29 October 2019). "Photolyase-Like Catalytic Behavior of CeO2". Nano Letters. 19 (11): 8270–8277. Bibcode:2019NanoL..19.8270T. doi:10.1021/acs.nanolett.9b03836. PMID 31661288. S2CID 204970215.
  103. ^ Gooding, J. Justin (27 September 2019). "Can Nanozymes Have an Impact on Sensing?". ACS Sensors. 4 (9): 2213–2214. doi:10.1021/acssensors.9b01760. PMID 31558030.
  104. ^ Cao, Fangfang; Zhang, Lu; You, Yawen; Zheng, Lirong; Ren, Jinsong; Qu, Xiaogang (12 February 2020). "An Enzyme‐Mimicking Single‐Atom Catalyst as an Efficient Multiple Reactive Oxygen and Nitrogen Species Scavenger for Sepsis Management". Angewandte Chemie. 132 (13): 5146–5153. doi:10.1002/ange.201912182. S2CID 214232731.
  105. ^ Wang, Dongdong; Wu, Huihui; Phua, Soo Zeng Fiona; Yang, Guangbao; Qi Lim, Wei; Gu, Long; Qian, Cheng; Wang, Haibao; Guo, Zhen; Chen, Hongzhong; Zhao, Yanli (17 January 2020). "Self-assembled single-atom nanozyme for enhanced photodynamic therapy treatment of tumor". Nature Communications. 11 (1): 357. Bibcode:2020NatCo..11..357W. doi:10.1038/s41467-019-14199-7. PMC 6969186. PMID 31953423.
  106. ^ Sun, Duo; Pang, Xin; Cheng, Yi; Ming, Jiang; Xiang, Sijin; Zhang, Chang; Lv, Peng; Chu, Chengchao; Chen, Xiaolan; Liu, Gang; Zheng, Nanfeng (5 February 2020). "Ultrasound-Switchable Nanozyme Augments Sonodynamic Therapy against Multidrug-Resistant Bacterial Infection". ACS Nano. 14 (2): 2063–2076. doi:10.1021/acsnano.9b08667. PMID 32022535. S2CID 211034499.
  107. ^ Sang, Yanjuan; Cao, Fangfang; Li, Wei; Zhang, Lu; You, Yawen; Deng, Qingqing; Dong, Kai; Ren, Jinsong; Qu, Xiaogang (26 February 2020). "Bioinspired Construction of a Nanozyme-Based H2O2 Homeostasis Disruptor for Intensive Chemodynamic Therapy". Journal of the American Chemical Society. 142 (11): 5177–5183. doi:10.1021/jacs.9b12873. PMID 32100536. S2CID 211524485.
  108. ^ Zhen, Wenyao; Liu, Yang; Wang, Wei; Zhang, Mengchao; Hu, Wenxue; Jia, Xiaodan; Wang, Chao; Jiang, Xiue (1 April 2020). "Specific 'Unlocking' of a Nanozyme-Based Butterfly Effect To Break the Evolutionary Fitness of Chaotic Tumors". Angewandte Chemie International Edition. 59 (24): 9491–9497. doi:10.1002/anie.201916142. PMID 32100926. S2CID 211523638.
  109. ^ Yan, Xiyun (2020). Nanozymology. Nanostructure Science and Technology. doi:10.1007/978-981-15-1490-6. ISBN 978-981-15-1489-0. S2CID 210954266.[페이지 필요]
  110. ^ Shi, Jinjin; Yu, Wenyan; Xu, Lihua; Yin, Na; Liu, Wei; Zhang, Kaixiang; Liu, Junjie; Zhang, Zhenzhong (2020). "Bioinspired Nanosponge for Salvaging Ischemic Stroke via Free Radical Scavenging and Self-Adapted Oxygen Regulating". Nano Letters. 20 (1): 780–789. Bibcode:2020NanoL..20..780S. doi:10.1021/acs.nanolett.9b04974. PMID 31830790. S2CID 209342956.
  111. ^ Mikolajczak, Dorian J.; Berger, Allison A.; Koksch, Beate (2020). "Catalytically Active Peptide‐Gold Nanoparticle Conjugates: Prospecting for Artificial Enzymes". Angewandte Chemie. 132 (23): 8858–8867. Bibcode:2020AngCh.132.8858M. doi:10.1002/ange.201908625.
  112. ^ Gao, Meng; Wang, Zhenzhen; Zheng, Huizhen; Wang, Li; Xu, Shujuan; Liu, Xi; Li, Wei; Pan, Yanxia; Wang, Weili; Cai, Xiaoming; Wu, Ren'an; Gao, Xingfa; Li, Ruibin (2020). "Two‐Dimensional Tin Selenide (Sn Se) Nanosheets Capable of Mimicking Key Dehydrogenases in Cellular Metabolism". Angewandte Chemie. 132 (9): 3647–3652. doi:10.1002/ange.201913035. S2CID 241399324.
  113. ^ Li, Feng; Li, Shuai; Guo, Xiaocui; Dong, Yuhang; Yao, Chi; Liu, Yangping; Song, Yuguang; Tan, Xiaoli; Gao, Lizeng; Yang, Dayong (25 March 2020). "Chiral carbon dots mimicking topoisomerase I to enantioselectively mediate topological rearrangement of supercoiled DNA". Angewandte Chemie International Edition. 59 (27): 11087–11092. doi:10.1002/anie.202002904. PMID 32212366. S2CID 226196486.
  114. ^ Zhu, Yunyao; Wu, Jiangjiexing; Han, Lijun; Wang, Xiaoyu; Li, Wei; Guo, Hongchao; Wei, Hui (4 May 2020). "Nanozyme Sensor Arrays Based on Heteroatom-Doped Graphene for Detecting Pesticides". Analytical Chemistry. 92 (11): 7444–7452. doi:10.1021/acs.analchem.9b05110. PMID 32363854. S2CID 218492816.
  115. ^ Huang, Rui; Li, Cheng-Hsuan; Cao-Milán, Roberto; He, Luke D.; Makabenta, Jessa Marie; Zhang, Xianzhi; Yu, Erlei; Rotello, Vincent M. (28 May 2020). "Polymer-Based Bioorthogonal Nanocatalysts for the Treatment of Bacterial Biofilms". Journal of the American Chemical Society. 142 (24): 10723–10729. doi:10.1021/jacs.0c01758. PMC 7339739. PMID 32464057.
  116. ^ Miao, Zhaohua; Jiang, Shanshan; Ding, Mengli; Sun, Siyuan; Ma, Yan; Younis, Muhammad Rizwan; He, Gang; Wang, Jingguo; Lin, Jing; Cao, Zhong; Huang, Peng; Zha, Zhengbao (29 April 2020). "Ultrasmall Rhodium Nanozyme with RONS Scavenging and Photothermal Activities for Anti-Inflammation and Antitumor Theranostics of Colon Diseases". Nano Letters. 20 (5): 3079–3089. Bibcode:2020NanoL..20.3079M. doi:10.1021/acs.nanolett.9b05035. PMID 32348149. S2CID 217592822.
  117. ^ Xu, Yuan; Xue, Jing; Zhou, Qing; Zheng, Yongjun; Chen, Xinghua; Liu, Songqin; Shen, Yanfei; Zhang, Yuanjian (8 June 2020). "Fe‐N‐C Nanozyme with Both Accelerated and Inhibited Biocatalytic Activities Capable of Accessing Drug‐Drug Interaction". Angewandte Chemie International Edition. 59 (34): 14498–14503. doi:10.1002/anie.202003949. PMID 32515070. S2CID 219549595.
  118. ^ Jiang, Yuyan; Zhao, Xuhui; Huang, Jiaguo; Li, Jingchao; Upputuri, Paul Kumar; Sun, He; Han, Xiao; Pramanik, Manojit; Miao, Yansong; Duan, Hongwei; Pu, Kanyi; Zhang, Ruiping (20 April 2020). "Transformable hybrid semiconducting polymer nanozyme for second near-infrared photothermal ferrotherapy". Nature Communications. 11 (1): 1857. Bibcode:2020NatCo..11.1857J. doi:10.1038/s41467-020-15730-x. PMC 7170847. PMID 32312987.
  119. ^ Liu, Tengfei; Xiao, Bowen; Xiang, Fei; Tan, Jianglin; Chen, Zhuo; Zhang, Xiaorong; Wu, Chengzhou; Mao, Zhengwei; Luo, Gaoxing; Chen, Xiaoyuan; Deng, Jun (3 June 2020). "Ultrasmall copper-based nanoparticles for reactive oxygen species scavenging and alleviation of inflammation related diseases". Nature Communications. 11 (1): 2788. Bibcode:2020NatCo..11.2788L. doi:10.1038/s41467-020-16544-7. PMC 7270130. PMID 32493916.
  120. ^ He, Lizhen; Huang, Guanning; Liu, Hongxing; Sang, Chengcheng; Liu, Xinxin; Chen, Tianfeng (1 March 2020). "Highly bioactive zeolitic imidazolate framework-8–capped nanotherapeutics for efficient reversal of reperfusion-induced injury in ischemic stroke". Science Advances. 6 (12): eaay9751. Bibcode:2020SciA....6.9751H. doi:10.1126/sciadv.aay9751. PMC 7080448. PMID 32206718.
  121. ^ Xiao, Yi; Hong, Jaeyoung; Wang, Xiao; Chen, Tao; Hyeon, Taeghwan; Xu, Weilin (16 July 2020). "Revealing Kinetics of Two-Electron Oxygen Reduction Reaction at Single-Molecule Level". Journal of the American Chemical Society. 142 (30): 13201–13209. doi:10.1021/jacs.0c06020. PMID 32628842. S2CID 220387010.
  122. ^ Lin, Shichao; Cheng, Yuan; Zhang, He; Wang, Xiaoyu; Zhang, Yuye; Zhang, Yuanjian; Miao, Leiying; Zhao, Xiaozhi; Wei, Hui (29 August 2019). "Copper Tannic Acid Coordination Nanosheet: A Potent Nanozyme for Scavenging ROS from Cigarette Smoke". Small. 16 (27): 1902123. doi:10.1002/smll.201902123. PMID 31468655. S2CID 201672628.
  123. ^ Gao, Liang; Zhang, Ya; Zhao, Lina; Niu, Wenchao; Tang, Yuhua; Gao, Fuping; Cai, Pengju; Yuan, Qing; Wang, Xiayan; Jiang, Huaidong; Gao, Xueyun (1 July 2020). "An artificial metalloenzyme for catalytic cancer-specific DNA cleavage and operando imaging". Science Advances. 6 (29): eabb1421. Bibcode:2020SciA....6B1421G. doi:10.1126/sciadv.abb1421. PMC 7439319. PMID 32832637. S2CID 220601168.
  124. ^ Liu, Yufeng; Cheng, Yuan; Zhang, He; Zhou, Min; Yu, Yijun; Lin, Shichao; Jiang, Bo; Zhao, Xiaozhi; Miao, Leiying; Wei, Chuan-Wan; Liu, Quanyi; Lin, Ying-Wu; Du, Yan; Butch, Christopher J.; Wei, Hui (1 July 2020). "Integrated cascade nanozyme catalyzes in vivo ROS scavenging for anti-inflammatory therapy". Science Advances. 6 (29): eabb2695. Bibcode:2020SciA....6B2695L. doi:10.1126/sciadv.abb2695. PMC 7439611. PMID 32832640. S2CID 220601175.
  125. ^ Chen, Rui; Neri, Simona; Prins, Leonard J. (20 July 2020). "Enhanced catalytic activity under non-equilibrium conditions". Nature Nanotechnology. 15 (10): 868–874. Bibcode:2020NatNa..15..868C. doi:10.1038/s41565-020-0734-1. PMID 32690887. S2CID 220656706.
  126. ^ Shen, Xiaomei; Wang, Zhenzhen; Gao, Xingfa; Zhao, Yuliang (6 November 2020). "Density Functional Theory-Based Method to Predict the Activities of Nanomaterials as Peroxidase Mimics". ACS Catalysis. 10 (21): 12657–12665. doi:10.1021/acscatal.0c03426. S2CID 225336098.
  127. ^ Nandhakumar, Ponnusamy; Kim, Gyeongho; Park, Seonhwa; Kim, Seonghye; Kim, Suhkmann; Park, Jin Kyoon; Lee, Nam‐Sihk; Yoon, Young Ho; Yang, Haesik (7 December 2020). "Metal Nanozyme with Ester Hydrolysis Activity in the Presence of Ammonia‐Borane and Its Use in a Sensitive Immunosensor". Angewandte Chemie International Edition. 59 (50): 22419–22422. doi:10.1002/anie.202009737. PMID 32875647. S2CID 221467334.
  128. ^ Zhao, Sheng; Li, Yixuan; Liu, Quanyi; Li, Sirong; Cheng, Yuan; Cheng, Chaoqun; Sun, Ziying; Du, Yan; Butch, Christopher J.; Wei, Hui (November 2020). "An Orally Administered CeO 2 @Montmorillonite Nanozyme Targets Inflammation for Inflammatory Bowel Disease Therapy". Advanced Functional Materials. 30 (45): 2004692. doi:10.1002/adfm.202004692. S2CID 224911666.
  129. ^ Wu, Jiangjiexing; Yu, Yijun; Cheng, Yuan; Cheng, Chaoqun; Zhang, Yihong; Jiang, Bo; Zhao, Xiaozhi; Miao, Leiying; Wei, Hui (18 January 2021). "Ligand‐Dependent Activity Engineering of Glutathione Peroxidase‐Mimicking MIL‐47(V) Metal–Organic Framework Nanozyme for Therapy". Angewandte Chemie International Edition. 60 (3): 1227–1234. doi:10.1002/anie.202010714. PMID 33022864. S2CID 222180771.
  130. ^ Wang, Dongdong; Wu, Huihui; Wang, Changlai; Gu, Long; Chen, Hongzhong; Jana, Deblin; Feng, Lili; Liu, Jiawei; Wang, Xueying; Xu, Pengping; Guo, Zhen; Chen, Qianwang; Zhao, Yanli (8 February 2021). "Self‐Assembled Single‐Site Nanozyme for Tumor‐Specific Amplified Cascade Enzymatic Therapy". Angewandte Chemie International Edition. 60 (6): 3001–3007. doi:10.1002/anie.202008868. PMID 33091204. S2CID 225053668.
  131. ^ Singh, Namrata; NaveenKumar, Somanathapura K.; Geethika, Motika; Mugesh, Govindasamy (8 February 2021). "A Cerium Vanadate Nanozyme with Specific Superoxide Dismutase Activity Regulates Mitochondrial Function and ATP Synthesis in Neuronal Cells". Angewandte Chemie International Edition. 60 (6): 3121–3130. doi:10.1002/anie.202011711. PMID 33079465. S2CID 224812443.
  132. ^ Bhattacharyya, Soumalya; Ali, Sk Rajab; Venkateswarulu, Mangili; Howlader, Prodip; Zangrando, Ennio; De, Mrinmoy; Mukherjee, Partha Sarathi (4 November 2020). "Self-Assembled Pd 12 Coordination Cage as Photoregulated Oxidase-Like Nanozyme". Journal of the American Chemical Society. 142 (44): 18981–18989. doi:10.1021/jacs.0c09567. PMID 33104330. S2CID 225083774.
  133. ^ Wu, Di; Li, Jingkun; Xu, Shujuan; Xie, Qianqian; Pan, Yanxia; Liu, Xi; Ma, Ronglin; Zheng, Huizhen; Gao, Meng; Wang, Weili; Li, Jia; Cai, Xiaoming; Jaouen, Frédéric; Li, Ruibin (18 November 2020). "Engineering Fe–N Doped Graphene to Mimic Biological Functions of NADPH Oxidase in Cells". Journal of the American Chemical Society. 142 (46): 19602–19610. doi:10.1021/jacs.0c08360. PMID 33108194. S2CID 225100148.
  134. ^ Li, Yongxin; Sun, Pan; Zhao, Luyang; Yan, Xuehai; Ng, Dennis K. P.; Lo, Pui‐Chi (14 December 2020). "Ferric Ion Driven Assembly of Catalase‐like Supramolecular Photosensitizing Nanozymes for Combating Hypoxic Tumors". Angewandte Chemie. 132 (51): 23428–23438. doi:10.1002/ange.202010005. S2CID 241673359.
  135. ^ Wang, Longwei; Gao, Fene; Wang, Aizhu; Chen, Xuanyu; Li, Hao; Zhang, Xiao; Zheng, Hong; Ji, Rui; Li, Bo; Yu, Xin; Liu, Jing; Gu, Zhanjun; Chen, Fulin; Chen, Chunying (December 2020). "Defect‐Rich Adhesive Molybdenum Disulfide/rGO Vertical Heterostructures with Enhanced Nanozyme Activity for Smart Bacterial Killing Application". Advanced Materials. 32 (48): 2005423. doi:10.1002/adma.202005423. PMID 33118265. S2CID 226038440.
  136. ^ Zhang, Lu; Liu, Zhengwei; Deng, Qingqing; Sang, Yanjuan; Dong, Kai; Ren, Jinsong; Qu, Xiaogang (14 December 2020). "Nature‐Inspired Construction of MOF@COF Nanozyme with Active Sites in Tailored Microenvironment and Pseudopodia‐Like Surface for Enhanced Bacterial Inhibition". Angewandte Chemie International Edition. 60 (7): 3469–3474. doi:10.1002/anie.202012487. PMID 33118263. S2CID 226080916.
  137. ^ Zhang, Yang; Villarreal, Esteban; Li, Guangfang Grace; Wang, Wei; Wang, Hui (5 November 2020). "Plasmonic Nanozymes: Engineered Gold Nanoparticles Exhibit Tunable Plasmon-Enhanced Peroxidase-Mimicking Activity". The Journal of Physical Chemistry Letters. 11 (21): 9321–9328. doi:10.1021/acs.jpclett.0c02640. PMID 33089980. S2CID 224823575.
  138. ^ Wang, Zhiyi; Li, Ziyuan; Sun, Zhaoli; Wang, Shuren; Ali, Zeeshan; Zhu, Sihao; Liu, Sha; Ren, Qiushi; Sheng, Fugeng; Wang, Baodui; Hou, Yanglong (1 November 2020). "Visualization nanozyme based on tumor microenvironment "unlocking" for intensive combination therapy of breast cancer". Science Advances. 6 (48): eabc8733. Bibcode:2020SciA....6.8733W. doi:10.1126/sciadv.abc8733. PMC 7695480. PMID 33246959.
  139. ^ Wu, Jiangjiexing; Wang, Zhenzhen; Jin, Xin; Zhang, Shuo; Li, Tong; Zhang, Yihong; Xing, Hang; Yu, Yang; Zhang, Huigang; Gao, Xingfa; Wei, Hui (January 2021). "Hammett Relationship in Oxidase‐Mimicking Metal–Organic Frameworks Revealed through a Protein‐Engineering‐Inspired Strategy". Advanced Materials. 33 (3): 2005024. doi:10.1002/adma.202005024. PMID 33283334. S2CID 227528103.
  140. ^ Scott, Susannah; Zhao, Huimin; Dey, Abhishek; Gunnoe, T. Brent (4 December 2020). "Nano-Apples and Orange-Zymes". ACS Catalysis. 10 (23): 14315–14317. doi:10.1021/acscatal.0c05047.
  141. ^ Xi, Juqun; Zhang, Ruofei; Wang, Liming; Xu, Wei; Liang, Qian; Li, Jingyun; Jiang, Jian; Yang, Yili; Yan, Xiyun; Fan, Kelong; Gao, Lizeng (6 December 2020). "A Nanozyme‐Based Artificial Peroxisome Ameliorates Hyperuricemia and Ischemic Stroke". Advanced Functional Materials. 31 (9): 2007130. doi:10.1002/adfm.202007130. ISSN 1616-301X. S2CID 230609877.
  142. ^ "Artificial enzymes: Catalysis by design".
  143. ^ Jiao, Lei; Xu, Weiqing; Wu, Yu; Yan, Hongye; Gu, Wenling; Du, Dan; Lin, Yuehe; Zhu, Chengzhou (1 February 2021). "Single-atom catalysts boost signal amplification for biosensing". Chemical Society Reviews. 50 (2): 750–765. doi:10.1039/D0CS00367K. PMID 33306069. S2CID 228100965.
  144. ^ Kumari, Nitee; Kumar, Sumit; Karmacharya, Mamata; Dubbu, Sateesh; Kwon, Taewan; Singh, Varsha; Chae, Keun Hwa; Kumar, Amit; Cho, Yoon-Kyoung; Lee, In Su (13 January 2021). "Surface-Textured Mixed-Metal-Oxide Nanocrystals as Efficient Catalysts for ROS Production and Biofilm Eradication". Nano Letters. 21 (1): 279–287. Bibcode:2021NanoL..21..279K. doi:10.1021/acs.nanolett.0c03639. PMID 33306397. S2CID 228170364.
  145. ^ Komkova, Maria A.; Ibragimova, Olga A.; Karyakina, Elena E.; Karyakin, Arkady A. (14 January 2021). "Catalytic Pathway of Nanozyme 'Artificial Peroxidase' with 100-Fold Greater Bimolecular Rate Constants Compared to Those of the Enzyme". The Journal of Physical Chemistry Letters. 12 (1): 171–176. doi:10.1021/acs.jpclett.0c03014. PMID 33321035. S2CID 229285144.
  146. ^ Ma, Mengmeng; Liu, Zhenqi; Gao, Nan; Pi, Zifeng; Du, Xiubo; Ren, Jinsong; Qu, Xiaogang (30 December 2020). "Self-Protecting Biomimetic Nanozyme for Selective and Synergistic Clearance of Peripheral Amyloid-β in an Alzheimer's Disease Model". Journal of the American Chemical Society. 142 (52): 21702–21711. doi:10.1021/jacs.0c08395. PMID 33326236. S2CID 229302798.
  147. ^ Liu, Hanghang; Han, Yaobao; Wang, Tingting; Zhang, Hao; Xu, Qi; Yuan, Jiaxin; Li, Zhen (30 December 2020). "Targeting Microglia for Therapy of Parkinson's Disease by Using Biomimetic Ultrasmall Nanoparticles". Journal of the American Chemical Society. 142 (52): 21730–21742. doi:10.1021/jacs.0c09390. PMID 33315369. S2CID 229178158.
  148. ^ Liu, Haile; Li, Yonghui; Sun, Si; Xin, Qi; Liu, Shuhu; Mu, Xiaoyu; Yuan, Xun; Chen, Ke; Wang, Hao; Varga, Kalman; Mi, Wenbo; Yang, Jiang; Zhang, Xiao-Dong (7 January 2021). "Catalytically potent and selective clusterzymes for modulation of neuroinflammation through single-atom substitutions". Nature Communications. 12 (1): 114. arXiv:2012.09527. Bibcode:2021NatCo..12..114L. doi:10.1038/s41467-020-20275-0. PMC 7791071. PMID 33414464.
  149. ^ Liu, Yu; Chen, Lei; Chen, Yong; Zhang, Yi (5 January 2021). "Photo‐Controllable Catalysis and Chiral Monosaccharide Recognition Induced by Cyclodextrin Derivatives". Angewandte Chemie International Edition. 60 (14): 7654–7658. doi:10.1002/anie.202017001. ISSN 1433-7851. PMID 33400383. S2CID 230668470.
  150. ^ Feng, Xuanyu; Song, Yang; Chen, Justin S.; Xu, Ziwan; Dunn, Soren J.; Lin, Wenbin (20 January 2021). "Rational Construction of an Artificial Binuclear Copper Monooxygenase in a Metal–Organic Framework". Journal of the American Chemical Society. 143 (2): 1107–1118. doi:10.1021/jacs.0c11920. ISSN 0002-7863. PMID 33411525. S2CID 231192930.
  151. ^ 武江洁星, 魏辉; Jiangjiexing Wu, Hui Wei (24 January 2021). "浅谈纳米酶的高效设计策略" [Efficient Design Strategies for Nanozymes]. 化学进展 (in Chinese). 33 (1): 42. doi:10.7536/PC201117.
  152. ^ Xi, Zheng; Wei, Kecheng; Wang, Qingxiao; Kim, Moon J.; Sun, Shouheng; Fung, Victor; Xia, Xiaohu (24 February 2021). "Nickel–Platinum Nanoparticles as Peroxidase Mimics with a Record High Catalytic Efficiency". Journal of the American Chemical Society. 143 (7): 2660–2664. doi:10.1021/jacs.0c12605. PMID 33502185. S2CID 231766217.
  153. ^ Gong, Lige; Ding, Wenqiao; Chen, Ying; Yu, Kai; Guo, Changhong; Zhou, Baibin (6 April 2021). "Inhibition of Mitochondrial ATP Synthesis and Regulation of Oxidative Stress Based on {SbW 8 O 30 } Determined by Single‐Cell Proteomics Analysis". Angewandte Chemie. 133 (15): 8425–8432. doi:10.1002/ange.202100297. S2CID 242400655.
  154. ^ Kim, Minju; Dygas, Miroslaw; Sobolev, Yaroslav I.; Beker, Wiktor; Zhuang, Qiang; Klucznik, Tomasz; Ahumada, Guillermo; Ahumada, Juan Carlos; Grzybowski, Bartosz A. (3 February 2021). "On-Nanoparticle Gating Units Render an Ordinary Catalyst Substrate- and Site-Selective". Journal of the American Chemical Society. 143 (4): 1807–1815. doi:10.1021/jacs.0c09408. PMID 33471520. S2CID 231666073.
  155. ^ Zhu, Yang; Wang, Wenyu; Cheng, Junjie; Qu, Yunteng; Dai, Yi; Liu, Manman; Yu, Jianing; Wang, Chengming; Wang, Huijuan; Wang, Sicong; Zhao, Chao; Wu, Yuen; Liu, Yangzhong (19 April 2021). "Stimuli‐Responsive Manganese Single‐Atom Nanozyme for Tumor Therapy via Integrated Cascade Reactions". Angewandte Chemie International Edition. 60 (17): 9480–9488. doi:10.1002/anie.202017152. PMID 33543825. S2CID 231817944.
  156. ^ Zhang, Lufeng; Zhang, Liang; Deng, Hui; Li, Huan; Tang, Wentao; Guan, Luyao; Qiu, Ye; Donovan, Michael J.; Chen, Zhuo; Tan, Weihong (31 March 2021). "In vivo activation of pH-responsive oxidase-like graphitic nanozymes for selective killing of Helicobacter pylori". Nature Communications. 12 (1): 2002. doi:10.1038/s41467-021-22286-x. PMC 8012368. PMID 33790299.
  157. ^ Ji, Shufang; Jiang, Bing; Hao, Haigang; Chen, Yuanjun; Dong, Juncai; Mao, Yu; Zhang, Zedong; Gao, Rui; Chen, Wenxing; Zhang, Ruofei; Liang, Qian; Li, Haijing; Liu, Shuhu; Wang, Yu; Zhang, Qinghua; Gu, Lin; Duan, Demin; Liang, Minmin; Wang, Dingsheng; Yan, Xiyun; Li, Yadong (May 2021). "Matching the kinetics of natural enzymes with a single-atom iron nanozyme". Nature Catalysis. 4 (5): 407–417. doi:10.1038/s41929-021-00609-x. S2CID 233876554.
  158. ^ Chen, Yao; Shen, Xiaomei; Carmona, Unai; Yang, Fan; Gao, Xingfa; Knez, Mato; Zhang, Lianbing; Qin, Yong (June 2021). "Control of Stepwise Hg 2+ Reduction on Gold to Selectively Tune its Peroxidase and Catalase‐Like Activities and the Mechanism". Advanced Materials Interfaces. 8 (11): 2100086. doi:10.1002/admi.202100086. S2CID 236606846.
  159. ^ Zhou, Xuantong; You, Min; Wang, Fuhui; Wang, Zhenzhen; Gao, Xingfa; Jing, Chao; Liu, Jiaming; Guo, Mengyu; Li, Jiayang; Luo, Aiping; Liu, Huibiao; Liu, Zhihua; Chen, Chunying (June 2021). "Multifunctional Graphdiyne–Cerium Oxide Nanozymes Facilitate MicroRNA Delivery and Attenuate Tumor Hypoxia for Highly Efficient Radiotherapy of Esophageal Cancer". Advanced Materials. 33 (24): 2100556. doi:10.1002/adma.202100556. PMID 33949734. S2CID 233742755.
  160. ^ Yu, Bin; Wang, Wei; Sun, Wenbo; Jiang, Chunhuan; Lu, Lehui (16 June 2021). "Defect Engineering Enables Synergistic Action of Enzyme-Mimicking Active Centers for High-Efficiency Tumor Therapy". Journal of the American Chemical Society. 143 (23): 8855–8865. doi:10.1021/jacs.1c03510. PMID 34086444. S2CID 235348273.
  161. ^ Nanozymes for Environmental Engineering. Environmental Chemistry for a Sustainable World. 63. 2021. doi:10.1007/978-3-030-68230-9. ISBN 978-3-030-68229-3. S2CID 235326551.
  162. ^ Du, Fangxue; Liu, Luchang; Wu, Zihe; Zhao, Zhenyang; Geng, Wei; Zhu, Bihui; Ma, Tian; Xiang, Xi; Ma, Lang; Cheng, Chong; Qiu, Li (July 2021). "Pd‐Single‐Atom Coordinated Biocatalysts for Chem‐/Sono‐/Photo‐Trimodal Tumor Therapies". Advanced Materials. 33 (29): 2101095. doi:10.1002/adma.202101095. PMID 34096109. S2CID 235361149.
  163. ^ Yang, Bowen; Yao, Heliang; Tian, Han; Yu, Zhiguo; Guo, Yuedong; Wang, Yuemei; Yang, Jiacai; Chen, Chang; Shi, Jianlin (7 June 2021). "Intratumoral synthesis of nano-metalchelate for tumor catalytic therapy by ligand field-enhanced coordination". Nature Communications. 12 (1): 3393. Bibcode:2021NatCo..12.3393Y. doi:10.1038/s41467-021-23710-y. PMC 8184762. PMID 34099712.
  164. ^ Chen, Jinxing; Ma, Qian; Li, Minghua; Chao, Daiyong; Huang, Liang; Wu, Weiwei; Fang, Youxing; Dong, Shaojun (7 June 2021). "Glucose-oxidase like catalytic mechanism of noble metal nanozymes". Nature Communications. 12 (1): 3375. Bibcode:2021NatCo..12.3375C. doi:10.1038/s41467-021-23737-1. PMC 8184917. PMID 34099730.
  165. ^ Zhang, Ruofei; Yan, Xiyun; Fan, Kelong (23 July 2021). "Nanozymes Inspired by Natural Enzymes". Accounts of Materials Research. 2 (7): 534–547. doi:10.1021/accountsmr.1c00074.
  166. ^ Pecina, Adam; Rosa-Gastaldo, Daniele; Riccardi, Laura; Franco-Ulloa, Sebastian; Milan, Emil; Scrimin, Paolo; Mancin, Fabrizio; De Vivo, Marco (16 July 2021). "On the Metal-Aided Catalytic Mechanism for Phosphodiester Bond Cleavage Performed by Nanozymes". ACS Catalysis. 11 (14): 8736–8748. doi:10.1021/acscatal.1c01215. PMC 8397296. PMID 34476110.
  167. ^ Wei, Hui; Gao, Lizeng; Fan, Kelong; Liu, Juewen; He, Jiuyang; Qu, Xiaogang; Dong, Shaojun; Wang, Erkang; Yan, Xiyun (1 October 2021). "Nanozymes: A clear definition with fuzzy edges". Nano Today. 40: 101269. doi:10.1016/j.nantod.2021.101269.
  168. ^ Ouyang, Yu; Biniuri, Yonatan; Fadeev, Michael; Zhang, Pu; Carmieli, Raanan; Vázquez-González, Margarita; Willner, Itamar (4 August 2021). "Aptamer-Modified Cu 2+ -Functionalized C-Dots: Versatile Means to Improve Nanozyme Activities-'Aptananozymes'". Journal of the American Chemical Society. 143 (30): 11510–11519. doi:10.1021/jacs.1c03939. PMID 34286967. S2CID 236159523.
  169. ^ Yuan, Anran; Xia, Fan; Bian, Qiong; Wu, Haibin; Gu, Yueting; Wang, Tao; Wang, Ruxuan; Huang, Lingling; Huang, Qiaoling; Rao, Yuefeng; Ling, Daishun; Li, Fangyuan; Gao, Jianqing (24 August 2021). "Ceria Nanozyme-Integrated Microneedles Reshape the Perifollicular Microenvironment for Androgenetic Alopecia Treatment". ACS Nano. 15 (8): 13759–13769. doi:10.1021/acsnano.1c05272. ISSN 1936-0851. PMID 34279913. S2CID 236142266.
  170. ^ Yang, Jingjing; Pan, Bei; Zeng, Fei; He, Bangshun; Gao, Yanfeng; Liu, Xinli; Song, Yujun (10 March 2021). "Magnetic Colloid Antibodies Accelerate Small Extracellular Vesicles Isolation for Point-of-Care Diagnostics". Nano Letters. 21 (5): 2001–2009. Bibcode:2021NanoL..21.2001Y. doi:10.1021/acs.nanolett.0c04476. PMID 33591201. S2CID 231935616.
  171. ^ "Nanozymes: Advances and Applications".
  172. ^ Zandieh, Mohamad; Liu, Juewen (26 October 2021). "Nanozyme Catalytic Turnover and Self-Limited Reactions". ACS Nano. 15 (10): 15645–15655. doi:10.1021/acsnano.1c07520. PMID 34623130. S2CID 238476223.
  173. ^ Teng, Lili; Han, Xiaoyu; Liu, Yongchao; Lu, Chang; Yin, Baoli; Huan, Shuangyan; Yin, Xia; Zhang, Xiao‐Bing; Song, Guosheng (6 December 2021). "Smart Nanozyme Platform with Activity‐Correlated Ratiometric Molecular Imaging for Predicting Therapeutic Effects". Angewandte Chemie International Edition. 60 (50): 26142–26150. doi:10.1002/anie.202110427. PMID 34554633. S2CID 237607859.
  174. ^ Cao, Changyu; Zou, Hai; Yang, Nan; Li, Hui; Cai, Yu; Song, Xuejiao; Shao, Jinjun; Chen, Peng; Mou, Xiaozhou; Wang, Wenjun; Dong, Xiaochen (19 October 2021). "Fe 3 O 4 /Ag/Bi 2 MoO 6 Photoactivatable Nanozyme for Self‐Replenishing and Sustainable Cascaded Nanocatalytic Cancer Therapy". Advanced Materials: 2106996. doi:10.1002/adma.202106996. PMID 34626026. S2CID 238529101.
  175. ^ Chen, Jinxing; Zheng, Xiliang; Zhang, Jiaxin; Ma, Qian; Zhao, Zhiwei; Huang, Liang; Wu, Weiwei; Wang, Ying; Wang, Jin; Dong, Shaojun (11 October 2021). "Bubble-templated synthesis of nanocatalyst Co/C as NADH oxidase mimic". National Science Review: nwab186. doi:10.1093/nsr/nwab186.
  176. ^ Liu, Yuan; Huang, Yue; Kim, Dongyeop; Ren, Zhi; Oh, Min Jun; Cormode, David P.; Hara, Anderson T.; Zero, Domenick T.; Koo, Hyun (24 November 2021). "Ferumoxytol Nanoparticles Target Biofilms Causing Tooth Decay in the Human Mouth". Nano Letters. 21 (22): 9442–9449. doi:10.1021/acs.nanolett.1c02702. PMID 34694125. S2CID 239767560.
  177. ^ Chen, Yuanjun; Wang, Peixia; Hao, Haigang; Hong, Juanji; Li, Haijing; Ji, Shufang; Li, Ang; Gao, Rui; Dong, Juncai; Han, Xiaodong; Liang, Minmin; Wang, Dingsheng; Li, Yadong (10 November 2021). "Thermal Atomization of Platinum Nanoparticles into Single Atoms: An Effective Strategy for Engineering High-Performance Nanozymes". Journal of the American Chemical Society. 143 (44): 18643–18651. doi:10.1021/jacs.1c08581. PMID 34726407. S2CID 240421572.
  178. ^ Wang, Zhenzhen; Wu, Jiangjiexing; Zheng, Jia-Jia; Shen, Xiaomei; Yan, Liang; Wei, Hui; Gao, Xingfa; Zhao, Yuliang (25 November 2021). "Accelerated discovery of superoxide-dismutase nanozymes via high-throughput computational screening". Nature Communications. 12 (1): 6866. doi:10.1038/s41467-021-27194-8. PMID 34824234. S2CID 244660088.
  179. ^ https://pubs.acs.org/doi/full/10.1021/acs.analchem.1c04492
  180. ^ https://pubs.acs.org/doi/10.1021/acs.nanolett.1c04454