심플렉틱 프레임 번들
Symplectic frame bundlesymplectic 기하학에서, 주어진symplectic 매니폴드(M, ω){\displaystyle(M,\omega)\,}의symplectic 프레임 bundle[1]은 정준 주요 Sp({\displaystyle{\mathrm{파}}(n,{\mathbb{R}})}-subbundleπ R:R→ M{\displaystyle \pi_{\mathbf{R}}\colon{\mathbf{R}}\to M\,}의. 그tangent frame bundle consisting of linear frames which are symplectic with respect to . In other words, an element of the symplectic frame bundle is a linear frame at point i.e. an ordered basis of tangent vectors at of the tangent vector space 만족스러운
- and
for . For , each fiber of the principal -bundle M은(는) T ( ) 의 모든 동일선 기반 집합이다
The symplectic frame bundle , a subbundle of the tangent frame bundle , is an example of reductive G-structure on the manifold .
참고 항목
메모들
- ^ Habermann, Katharina; Habermann, Lutz (2006), Introduction to Symplectic Dirac Operators, Springer-Verlag, p. 23, ISBN 978-3-540-33420-0
책들
- Habermann, Katharina; Habermann, Lutz (2006), Introduction to Symplectic Dirac Operators, Springer-Verlag, ISBN 978-3-540-33420-0
- A.C.의 다 실바, Springer(2001)의 Symplexic Geometry에[permanent dead link] 대한 강의.ISBN 3-540-42195-5.
- 모리스 드 고손:Simplexic Geometry and Quantum Mechanics(2006) Birkhauser Verlag, Basel ISBN 3-7643-7574-4.