폭발성 안티모니

Explosive antimony

폭발성 안티몬은 충격에 매우 민감하여 긁히거나 갑작스러운 난방을 받으면 폭발하는 화학원소 안티몬할당로프다.[1][2][3][4][5][6] 할당로프는 1855년에 처음 설명되었다.[7][8]

화학자들은 아모르퍼스 유리를 형성하는 염산에서 안티몬 트리클로라이드의 농축 용액의 전기분해를 통해 할당로를 형성한다.[1][2][3][4] 이 유리는 경계에 상당한 양의 할로겐 불순물을 함유하고 있다.

그것이 폭발할 때, 할당로프는 그램 당 24칼로리 (100J)의 에너지를 방출한다.[9] 안티몬 트리클로로이드의 흰색 가스가 생성되고 원소 안티몬은 금속 형태로 되돌아간다.

참조

  1. ^ a b Allan C. Topp (1939). Studies on Explosive Antimony and Antimony Tetrachloride Solutions. Dalhousie University. Retrieved 2016-11-21.
  2. ^ a b N.C. Norman (1997). Chemistry of Arsenic, Antimony and Bismuth. Springer Science & Business Media. p. 50. ISBN 9780751403893. Retrieved 2016-11-21. Another possible allotrope, known as explosive antimony, has been reported which is produced by electrolysis of antimony chloride, iodide or bromide and is believed to be in a strained amorphous state.
  3. ^ a b Otfried Madelung (2012). Semiconductors: Data Handbook. Springer Science & Business Media. p. 408. ISBN 9783642188657. Retrieved 2016-11-21. Explosive Antimony is only metastable and transforms into metallic antimony during mechanical stress and heating. Explosive Antimony is probably not an allotropic form, but a mixed polymer.
  4. ^ a b Egon Wiberg, Nils Wiberg (2001). Inorganic Chemistry. Academic Press. p. 758. ISBN 9780123526519. Retrieved 2016-11-21.
  5. ^ Bernard Martel (2004). Chemical Risk Analysis: A Practical Handbook. Butterworth-Heinemann. ISBN 9780080529042. Retrieved 2016-11-21.
  6. ^ James H. Walton Jr. (July 1913). "Suspended changes in Nature". Popular Science. p. 31. Retrieved 2016-11-21. We are indebted to the investigations of Professor Cohen for a more striking example of a metastable metal, that of the " explosive " antimony. By passing an electric current through a solution of antimony chloride this metal may be deposited in the form of a thick metallic coating.
  7. ^ C.C. Coffin, Stuart Johnston (1934-10-01). "Studies on Explosive Antimony. I. The Microscopy of Polished Surfaces". Proceedings of the Royal Society of London. JSTOR 2935608.
  8. ^ C.C. Coffin (1935-10-15). "Studies on Explosive Antimony. II. Its Structure, Electrical Conductivity, and Rate of Crystallization" (PDF). Proceedings of the Royal Society of London. pp. 47–63. Retrieved 2016-11-21.{{cite news}}: CS1 maint : url-status (링크)
  9. ^ F. M. Aymerich, A. Delunas (1975-09-16). "On the explosive semiconductor-semimetal transition of antimony". Physica Status Solidi. doi:10.1002/pssa.2210310118. The energy released by this transition, is measured to be 24 cal per gram of amorphous Sb and is shown to be related to a variation of the mass density and of the conductivity behaviour of Sb going from one configuration to the other. A simple theoretical model is outlined which quite satisfactory gives the gross features of the free-energy diagram of the above transition, although more deep investigation is needed to account for the energy balance of it.