포셋 위상
Poset topology수학에서 포셋(S, ≤)과 관련된 포셋 위상(poset topology)은 포섭으로 정렬된 (S, ≤)의 유한 체인의 포셋에 있는 알렉산드로프 위상(open set is upper set)이다.
V를 정점의 집합으로 합시다.추상적 단순 복합체 Δ는 다음과 같이 면 V {\로 알려진 한정된 정점 집합이다
위와 같은 단순 콤플렉스 Δ를 감안하여, Δ 의 부분집합을 에 대한 (포인트 세트) 토폴로지를 정의한다.
Δ의 얼굴 포셋에 있는 알렉산드로프 위상이다.
포셋(S, ≤)과 연관된 오더 콤플렉스는 S를 정점으로 하고 (S, ≤)의 유한 체인을 면으로 한다.포셋(S, ≤)과 연관된 포셋 위상은 (S, ≤)과 연관된 주문 복합체 상의 알렉산드로프 위상이다.
참고 항목
참조
- 포셋 토폴로지: 도구 및 애플리케이션 Michelle L. Wachs, 강연은 기하학 조합에 관한 IAS/파크시티 대학원 여름학교(2004년 7월)에 주목한다.