게오르게 모로샤누
Gheorghe Moroșanu게오르게 모로샤누 | |
---|---|
![]() 게오르게 모로샤누(2013년) | |
태어난 | |
국적 | 루마니아어 |
모교 | 알렉산드루 이오안 쿠자 대학 |
로 알려져 있다. | 그의 일반 및 부분 미분 방정식, 연산자 이론, 적분 방정식, 변이와 최적 제어의 미적분, 유체역학, 차이 방정식, 응용 수학에 관한 연구 |
수상 |
|
과학 경력 | |
필드 | 수학 |
기관 | 클루즈나포카 바베보라이 대학교 |
박사학위 자문위원 | 비오렐 바르부 아돌프 하이모비치 |
게오르게 모로샤누(1950년 4월 30일, 루마니아 보토샤니군 다라바니에서 출생)는 일반 및 부분 미분 방정식, 연산자 이론, 적분 방정식, 변이와 최적 제어의 미적분학, 유체역학, 차이 방정식, 그리고 수학의 다른 가지에 관한 연구로 유명한 루마니아의 수학자다.[1]1981년 이아시에 있는 알렉산드루 이오안 쿠자 대학에서 박사학위를 받았다.
현재 클루즈나포카에 있는 바베슈볼라이 대학교에 소속되어 있다.2002년과 2020년 사이에 그는 이전에 슈투트가르트 대학교와 알렉산드루 이오안 쿠자 대학교에서 자리를 잡은 후 부다페스트에 있는 중앙유럽 대학교(국제 영어 대학, 미국 인가)의 교수로 재직했다.
여러 행정직 중 2004년부터 2012년까지 중앙유럽대학 수학학부장을 지냈다.2008년 헝가리 대통령에 의해 에계테미 타나르(헝가리 고등교육에서 가장 높은 학문적 칭호)로 임명되었다.[2][3]
모로샤누는 대학 공부를 하기 전 초등학교부터 고등학교까지의 12년 교육 기간(1957~1969) 동안 매 학년마다 학급에서 1위를 차지하며 수학에 대한 깊은 관심을 보였다.1969년 그는 이아시에 있는 알렉산드루 이오안 쿠자 대학에서 수학을 공부하기 시작했다.그는 150명이 넘는 졸업생 중에서 처음으로 박사학위를 받았다.그의 박사 논문, 질적 문제점 비선형 방정식 Accretive 형식 바나흐 Spaces,[4]의 제목 Atti 델라 아카데미아 나치오날레 dei Lincei면 필기장 방정식의 필기장에서는 수학 분석과 응용, 비선형 해석, 수치 F 같은 원래 결과 일류 잡지에 출판된 포함유엔Ctional Analtion Analysis and Optimization.
모로샤누는 수많은 연구 기사와 여러 권의 책(모노그래프와 교과서)의 저자가자 공동저자다.[5]
비선형 진화 방정식에[6] 대한 그의 모노그래프는 주로 그러한 방정식의 안정성 이론에 초점이 맞춰져 있다.이 모노그래프의 서문에서 미치엘 헤이즈윙클 교수(시리즈 에디터)는 다음과 같이 말하고 있다.
보통의 미분방정식의 안정 이론은 비선형 진화론들의 안정 이론을 위한 세균들을 포함하고 있다... 이 책은 이러한 문제들에 대한 자급자족적인 체계적인 설명에 전념하고 있으며, 그 분야에서 저자의 실질적인 성과들을 많이 포함하고 있다.
이 책은 단조로운 운영자들이 관리하는 2차 진화 방정식에 관한 그의 기사를 포함하여 일련의 관련 논문들이 뒤따랐다.[7][8][9][10]이러한 간행물은 비균질 사례에서 오랫동안 존재해 온 질문에 대한 완전한 답을 제공한다.
기능적 방법에[11] 대한 그의 공동 모노그래프와 단일한 섭동[12] 모두 대부분 저자들 때문에 독창적인 자료를 포함하고 있어 선형 및 비선형 미분 방정식으로 기술된 수학 모델을 탐구하는 데 유용한 새로운 아이디어와 방법을 제시한다.특히 특이적 섭동에 관한 책은 생물학, 화학, 공학에서 다양한 현상에 대한 수학적 모델인 특이하게 뒤죽박죽이 된 경계 가치 문제의 몇몇 중요한 계층에 대한 상세한 무증상 분석을 제공한다.이 책에는 추상적 반선형 및 중요한 응용이 있는 완전 비선형 진화 방정식에 관한 일부 관련 공동 논문이 뒤따랐다.[13][14][15][16]
주요 기능 분석 도구와 실제 문제 사이의 미세한 상호작용으로 맛을 낸 그의 2019년 기능 분석[17] 책에 대한 특별 언급이 있어야 한다.
모로샤누는 변이 미적분학, 유체역학 등에서도 활동하고 있다.[18]좀 더 구체적으로 말하면, 그가 남긴 기부의 유산은 다음과 같은 주제에 관한 것이다(그러나 이에 국한되지는 않는다).
• 힐버트 공간의 1차 및 2차 진화 방정식
• 포물선 및 쌍곡선 부분 미분방정식과 시스템(존재, 높은 규칙성, 해결책의 안정성, 시간 주기적 해결책)에 대한 초기 단계별 가치 문제
• 힐버트 공간의 비선형 부분 미분방정식 및 반선형 진화 방정식에 대한 특이 섭동 이론
• p-Laplacians 관련 고유값 문제를 포함한 타원 방정식의 경계 값 문제
• 비선형 일반 미분 방정식, 정수-차분 방정식, 지연 미분 방정식, 일반 p-Laplacian을 포함하는 방정식
• 단일 측정 시스템, 비선형 미분 측정 시스템;
• 근위부 점 알고리즘을 포함한 힐버트 공간의 차이 방정식
• 추상 진화 방정식 해결을 위한 푸리에 방법
• 최적화, 입력 식별 가능성, 최적 제어
• 음향학, 모빌리티 이론, 확산 과정, 유체 흐름, 유압학, 통합 회로, 수학 생물학 및 생태학, 비선형 오실레이터, 위상 방정식, 자체 조직 시스템, 전신 시스템 등의 응용 분야
1983년 그는 쌍곡선 부분 미분 방정식 이론에 대한 뛰어난 공헌을 인정받아 루마니아 아카데미의 게오르게 라즈르 상을 받았다.[19][20][21]위에서 언급한 기능분석 서적의 경우 게오르게 모로사누는 2021년 루마니아 과학자들 아카데미로부터 니콜라에 테오도레스쿠 상을 받았다.
그는 루마니아[22] 크레이오바 대학과 루마니아 콘스탄차 오비디우스 대학교에서 명예 박사학위를 받고 있다.[23]2019년에는 루마니아[24] 클루즈나포카 바베지볼라이 대학으로부터 호노리스 코로사 교수 칭호를 받았다.
1957년부터 1965년 사이에 (다라바니에 있는) 모로샤누 자신이 다녔던 학교가 2007년부터 그의 이름을 따서 명명되었는데, 이 때 그는 그의 업적을 인정받아 다라바니 명예시민 칭호도 받았다.[25][26][27][28]
2020년에 그는 루마니아 과학 아카데미의 해당 회원이 되었다.
참조
- ^ "Moroșanu's fields of interest". MathSciNet, American Mathematical Society.
- ^ "Határozata egyetemi tanári kinevezésekről (in English: Decision on appointments of university professors)", Oktatási Közlöny, 52 (22): 2490, 14 August 2008
- ^ 헝가리 대통령(Laszlo Solyom)에 의해 egyetemi tanarr로 임명된 Gheorghe Moro;anu; 2490페이지 참조, 2015년 4월 1일 회수
- ^ 수학계보 프로젝트 게오르게 모로샤누
- ^ 모로샤누의 《MathSciNet, MathSciNet, American Mathematical Society》가 2015년 4월 1일 출간되었다.
- ^ Moroșanu, G., Nonlinear Evolution Equations and Applications, D. Reidel Publishing Co., Dordrecht-Boston-Lancaster-Tokyo, 1988, ISBN 978-90-277-2486-1
- ^ Moroșanu, G., "Second-order differential equations on R+ governed by monotone operators", Nonlinear Analysis: 83 (2013) 69–81
- ^ Moroșanu, G., "Existence results for second-order monotone differential inclusions on the positive half-line", Journal of Mathematical Analysis and Applications: 419 (2014) 94–113
- ^ Moroşanu, G., "Existence for second order differential inclusions on R+ governed by monotone operators", Advanced Nonlinear Studies: 14 (2014) 661–670
- ^ Moroșanu, G., "On a class of second-order differential inclusions on the positive half-line", Zeitschrift für Analysis und Ihre Anwendungen: 34 (2015) 17–26
- ^ Hokkanen, V.-M.; Moroșanu, G., Functional Methods in Differential Equations, Chapman and Hall/CRC, Boca Raton-London-New York-Washington, D.C., 2002, ISBN 978-1-58488-283-1
- ^ Barbu, L.; Moroșanu, G., Singularly Perturbed Boundary-Value Problems, Birkhäuser, Basel-Boston-Berlin, 2007, ISBN 978-3-7643-8330-5
- ^ Ahsan, M.; Moroşanu, G., "Elliptic-like regularization of semilinear evolution equations", Journal of Mathematical Analysis and Applications: 396 (2012) 759–771
- ^ Ahsan, M.; Moroșanu, G., "Asymptotic expansions for elliptic-like regularizations of semilinear evolution equations", Journal of Differential Equations: 257 (2014) 2926–2949
- ^ Barbu, L.; Moroşanu, G., "Elliptic-like regularization of semilinear evolution equations and applications to some hyperbolic problems", Journal of Mathematical Analysis and Applications: 449 (2017) 966–978
- ^ Barbu, L.; Moroşanu, G., "Elliptic-like regularization of a fully nonlinear evolution inclusion and applications", Communications in Contemporary Mathematics: 19 (5) (2017), 1650037
- ^ Moroșanu, G., Functional Analysis for the Applied Sciences, Springer, Cham, Switzerland, 2019, ISBN 978-3-030-27152-7
- ^ 모로샤누의 연구 영역, MathSciNet, American Mathematical Society, 2015년 4월 1일 회수
- ^ Popa, C.C. (December 16, 2014). "100.000 de veghe sub rafturi (volume). Seminarul Al. Myller din Iasi, cea mai veche biblioteca de matematica din Romania si din Estul Europei (in Romanian)". jurnalul.ro. Archived from the original on March 22, 2015. Retrieved March 25, 2015.
- ^ Teișanu, V. (November 15, 2010). "Gheorghe Moroșanu portret sentimental (in Romanian)". momentul.ro. Archived from the original on December 23, 2014. Retrieved April 5, 2015.
- ^ Tonița, F. (March 13, 2014). "Non-valoarea este agresivă și greu de inlăturat. Va fi vina noastră dacă nu facem ceva în această direcție (in Romanian)". stiri.botosani.ro. Retrieved March 25, 2015.
- ^ "Gheorghe Moroșanu, Do we need mathematics?", Annals of the University of Craiova, Math. Comput. Sci. Series: 44 (2) (2017) 173–178
- ^ "Titlul de Doctor Honoris Causa al Universitatii Ovidius acordat matematicianului Gh. Morosanu". Observator de Constanta (in Romanian). October 20, 2016. Archived from the original on October 27, 2016. Retrieved October 24, 2016.
- ^ 의사 및 교수 호노리스 인과응보, 2019년 5월 5일 회수
- ^ 2014-2015년 4월 4일자로 검색된 보토자니 카운티 국가 교육부의 학교 목록; 34페이지, 181호선을 참조하라.
- ^ stiri.botosani.ro (September 9, 2010). "Gheorghe Moroșanu - Profesorul căruia orașul natal i-a dăruit o școală (in Romanian)". stiri.botosani.ro. Retrieved April 5, 2015.
- ^ Tonița, F. (March 15, 2014). "Satul Teioasa are o poziție specială pe harta lumii... Teioasa nu mai e acolo, Teioasa e atunci (in Romanian)". darabaneni.ro. Retrieved April 5, 2015.
- ^ Gheorghe Moroșanu 명예시민 Darabani, 2015년 4월 5일 회수